K* vector meson coupling to the $\Lambda(1520)$ resonance

Tetsuo Hyodo^a,

S. Sarkar^b, A. Hosaka^a and E. Oset^b *RCNP, Osaka^a IFIC, Valencia^b <u>2005, Dec. 2nd</u>*

Introduction : $\Lambda(1520)$

$$\Lambda(1520): J^P = 3/2^-, I = 0$$

 $\begin{array}{ll} \mbox{Mass}: 1519.5 \pm 1.0 \mbox{ MeV} \\ \mbox{Width}: 15.6 \pm 1.0 \mbox{ MeV} \\ \mbox{Decay modes}: \ \Lambda(1520) \rightarrow N \bar{K} & \mbox{45\%} \\ & \ \Lambda(1520) \rightarrow \Sigma \pi & \mbox{42\%} \\ & \ \Lambda(1520) \rightarrow \Lambda \pi \pi & \mbox{10\%} \end{array}$

(Naive) Quark model : SU(3) singlet

- **\star** large LS splitting with $\Lambda(1405)$?
- **★** decay branching ratio?

 $\Lambda(1520)$: recent interest

Photo-production experiments Large p/n asymmetry?

LEPS @ SPring-8, CLAS @ J-lab.

S.I. Nam et al., PRD 71, 114012 (2005)

Importance of the K* exchange?

D. P. Barber et al., Z. Phys. C 7, 17 (1980)

A. Sibirtsev et al., hep-ph/0509145

Θ⁺ Λ^{*} coherent production on deuteron

LEPS @ SPring-8

A.I. Titov et al., PRC 72, 035206 (2005)

Chiral unitary model

Scattering of 8 meson(0⁻) and 8 baryon(1/2⁺)

Dynamical generation $J^P = 1/2^-$ resonances $\Lambda(1405), \Lambda(1670),$ $\Sigma(1620), \Xi(1620),$ N(1535) Chiral unitary model

Scattering of 8 meson(0⁻) and 10 baryon(3/2⁺)

Dynamical generation

 $J^P = 3/2^-$ resonances $\Lambda(1520), \Sigma(1670), \Sigma(1820), ...$

Framework of the chiral unitary model

Decuplet-Octet scattering

Interaction of 8 meson and 10 baryon is derived from chiral perturbation theory

E. Kolomeitsev *et al.*, PLB 585, 243 (2004) S. Sarkar *et al.*, NPA 750, 294 (2005)

non-relativistic reduction + s-wave

$$V_{ij} = -\frac{1}{4f^2}C_{ij}(k^0 + k'^0)$$

-> same structure as 8–8 scattering

SU(3) decomposition

8 × 10 = 8 + 10 + 27 + 35 repulsive attractive weakly attractive

Results for the Decuplet-Octet scattering

Results for the exotic state?

$8 \times 10 = 8 + 10 + 27 + 35$ weakly attractive

Quantitative description of $\Lambda(1520)$

More quantitative description -> include d-wave channels : Κ̄Ν, πΣ

Additional coupling constants -> Decay width, branching ratio are reproduced

S. Sarkar *et al.*, PRC 72, 015206 (2005) -> K induced reaction L. Roca *et al.*, in preparation -> photon, π induced production M. Döring *et al.*, in preparation -> radiative decay

Effective interaction Lagrangian

$$\mathcal{L}_{\Lambda^*\bar{K}^*N} = \frac{g_{\Lambda^*\bar{K}^*N}}{M_{K^*}} \bar{\Lambda}^*_{\mu} \gamma_{\nu} (\partial^{\mu}K^{*\nu} - \partial^{\nu}K^{*\mu})N + h.c.$$

Non-relativistic reduction (s-wave)

$$-it_{\Lambda^*\bar{K}^*N} = g_{\Lambda^*\bar{K}^*N} S \cdot \epsilon$$

Formulation

Amplitude for $\bar{K}^*N \to \pi \Sigma^*$ Microscopic couplings

Chiral unitary model

Calculated by evaluating diagrams

$$g_{\Lambda^*\bar{K}^*N}(P_0,k) = g_{\Lambda^*\pi\Sigma^*} \left[G_{\pi\Sigma^*}(P_0) + \frac{2}{3}\tilde{G}_{\pi\Sigma^*K}(P_0,k) \right] g_{\pi\Sigma^*\bar{K}^*N}$$

$$+g_{\Lambda^*\pi\Sigma}\tilde{G}_{\pi\Sigma K}(P_0,k)g_{\pi\Sigma\bar{K}^*N}+g_{\Lambda^*\bar{K}N}\tilde{G}_{\bar{K}N\pi}(P_0,k)g_{\bar{K}N\bar{K}^*N}$$

Residue of the pole in chiral unitary mdoel

Evaluate this at

 $P_0 = 1520 \text{ MeV}$ (resonance dominance) $k \sim 0 \text{ MeV}$ (s-wave dominance)

Numerical result

Small number : Igl ~ O(1)

g = +7.1 or -12.6

Chrial unitary model gives a small number.

Summary : mixing scheme

We calculate the \overline{K}^*N coupling to the $\Lambda(1520)$ in the chiral unitary model

The Λ(1520) is generated dynamically in the 8meson-10baryon scattering with phenomenological couplings to the d-wave 8meson-8baryon channels.

The obtained coupling constant is small compared with the quark model result.

★ difference of quark structure?
★ difference of SU(3) structure?
Further investigation is needed.

u-channel photoproduction : $\Lambda(1520)$ at forward

Measure the ratio of K and K* couplings background : ground state Λ exchange

