Extraction of Δs for *D* Meson **Production in Neutrino DIS**

Kazutaka SUDOH (KEK) J-PARC Workshop@KEK 1 December 2005

- I. Introduction
- II. Semi-inclusive D/\overline{D} Production in CC DIS

$$egin{aligned} &
u+ec p
ightarrow l^- + D + X \ & ar
u+ec p
ightarrow l^+ + ar D + X \end{aligned}$$

- **III. Numerical Results**
- **IV.** Conclusion

I. Introduction

Pol-PDF: Δs , Δg

- Uncertainties of the polarized sea quark and gluon distributions are still large.
 - Flavor decomposition of $\Delta \overline{q}$
 - Semi-inclusive DIS (HERMES)
- Charged current (CC) DIS is effective to extract the flavor decomposed parton distribution.
 - W[±] couples to parton flavor
 - Through longitudinal single spin asymmetry A_L
 - Neutrino-induced reaction

CC DIS and Flavor Structure of Δq

• Cross Section:

$$\frac{d^2\sigma(\nu p \text{ or } \overline{\nu} p)}{dQ^2d\nu} = \frac{G^2}{2\pi} \cdot \frac{k'}{k} \left[W_2(Q^2,\nu)\cos^2\frac{\theta}{2} + 2W_1(Q^2,\nu)\sin^2\frac{\theta}{2} \pm W_3(Q^2,\nu)\frac{k+k'}{M}\sin^2\frac{\theta}{2} \right]$$

• How about flavor SU(3)_f structure?

$$\Delta u_s = \Delta d_s = \Delta s = \Delta \bar{u} = \Delta \bar{d} = \Delta \bar{s} \quad (\text{Flavor SU}(3)_f)$$

 $\Delta \bar{u} = \Delta \bar{d} = \lambda \Delta \bar{s}$ (E. Leader, *et al.*, *Phys. Lett.* B462, 189 (1999).)

To examine the polarized *s* quark distribution, we studied semi-inclusive D/\overline{D} production in $v\overline{p}$ scattering.

$$u+ec p
ightarrow l^-+D+X, \quad ar
u+ec p
ightarrow l^++ar D+X$$

II. Semi-inclusive D/\overline{D} Production

These processes might be observed in the forthcoming neutrino experiments.

v-factory@J-PARC (If the polarized target can be installed.)

Observables

To extract information about the polarized PDFs, we calculated the following observables.

1. Spin Dependent Differential Cross Section

$$\frac{d\Delta\sigma}{dx} \equiv \frac{d\sigma(-) - d\sigma(+)}{dx}$$

x : Bjorken x

 $d\sigma(+,-)/dx$: Spin dependent differential cross section with the positive helicity of the target proton or the negative helicity of the target proton

2. Longitudinal Single Spin Asymmetry

$$A^{D} \equiv \frac{d\sigma(-) - d\sigma(+)/dx}{d\sigma(-) + d\sigma(+)/dx} = \frac{d\Delta\sigma/dx}{d\sigma/dx}$$

Extraction of $\Delta s(x)$

$$\begin{cases} d\sigma = \{\mathbf{U}_{cs}^2 s(x) + \mathbf{U}_{cd}^2 d(x)\} \, dx \left(\frac{d\hat{\sigma}}{d\hat{t}}\right) d\hat{t} D_c(z) dz \\\\ d\Delta\sigma = \{\mathbf{U}_{cs}^2 \Delta s(x) + \mathbf{U}_{cd}^2 \Delta d(x)\} \, dx \left(\frac{d\Delta\hat{\sigma}}{d\hat{t}}\right) d\hat{t} D_c(z) dz \end{cases}$$

$$A^{D} = \frac{d\Delta\sigma}{d\sigma} \approx \frac{\{\mathbf{U}_{cs}^{2}\Delta s(x) + \mathbf{U}_{cd}^{2}\Delta d(x)\}}{\{\mathbf{U}_{cs}^{2}s(x) + \mathbf{U}_{cd}^{2}d(x)\}}$$

$$A^{\overline{D}} \approx -\frac{\{\mathbf{U}_{cs}^{2} \Delta \overline{s}(x) + \mathbf{U}_{cd}^{2} \Delta \overline{d}(x)\}}{\{\mathbf{U}_{cs}^{2} \overline{s}(x) + \mathbf{U}_{cd}^{2} \overline{d}(x)\}} = -\frac{\Delta \overline{s}(x)}{\overline{s}(x)} \approx -\frac{\Delta s(x)}{s(x)}$$

$$\begin{split} \bar{d}(x) &= \bar{s}(x), \ \Delta \bar{d}(x) = \Delta \bar{s}(x) \ \text{Flavor SU(3)}_f \\ \bar{d}(x) &= \lambda \bar{s}(x), \ \Delta \bar{d}(x) = \lambda \Delta \bar{s}(x) \ \text{non-SU(3)}_f \end{split} \text{Above equation} \\ \text{is consistent in both cases.} \end{split}$$

We can directly extract the polarized *s* quark distribution!! (The case of \overline{D} production is more promising.)

K. Sudoh

J-PARC Workshop, 12/1/2005, KEK Page-6

LO and $\mathcal{O}(\alpha_s)$ NLO diagrams of subprocesses

Differential Cross Sections with structure functions F_i and g_i

$$\mathbf{Unpol}: \ \frac{d^3 \sigma^{\nu p}}{dx dy dz} = \frac{G_F^2 s}{2\pi (1 + Q^2 / M_W^2)^2} \left[(1 - y) \mathbf{F}_2^{W^{\mp}} + y^2 x \mathbf{F}_1^{W^{\mp}} \pm y (1 - \frac{y}{2}) x \mathbf{F}_3^{W^{\mp}} \right]$$

$$\begin{array}{l} \textbf{Pol}: \ \frac{d^3 \Delta \sigma^{\nu p}}{dx dy dz} = \frac{G_F^2 s}{2 \pi (1 + Q^2 / M_W^2)^2} \left[(1 - y) g_4^{W^{\mp}} + y^2 x g_3^{W^{\mp}} \pm y (1 - \frac{y}{2}) x g_1^{W^{\mp}} \right] \end{array}$$

where

$$x = \frac{Q^2}{2P_p \cdot q}, \quad y = \frac{P_p \cdot q}{P_p \cdot P_\nu}, \quad z = \frac{P_p \cdot P_D}{P_p \cdot q}$$

 $P_p, \ P_{\nu}, \ P_D, \ q \ : \ {
m Momentum of proton, neutrino}, \ D \ {
m meson}, \ W^{\pm} \ {
m boson}$

- G_F : Fermi coupling
 - s : Center of mass energy squared
- M_W : W^{\pm} boson mass
- F_i, g_i : Unpolarized, Polarized structure functions

The structure functions F_i and g_i in vp scattering are obtained by the following convolutions.

$$\begin{cases} \mathcal{F}_i^c \\ \mathcal{G}_i^c \end{pmatrix} = \begin{cases} s \\ \Delta s \end{pmatrix} D_c(z) \\ + \frac{\alpha_s(\mu_R^2)}{2\pi} \int_{\xi}^1 \frac{d\xi'}{\xi'} \int_{\max(z,\zeta_{\min})}^1 \frac{d\zeta}{\zeta} \left[\begin{cases} H_i^g \\ \Delta H_i^g \end{pmatrix} \left[\xi',\zeta,\mu_F^2,\lambda \right] \right] \left\{ s \\ \Delta s \end{pmatrix} \\ + \begin{cases} s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ + \begin{cases} H_i^g \\ \Delta H_i^g \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ + \begin{cases} H_i^g \\ \Delta H_i^g \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ + \begin{cases} H_i^g \\ \Delta H_i^g \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ = \begin{cases} s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ = \begin{cases} s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ = \begin{cases} s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ = \begin{cases} s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ = \begin{cases} s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ = \begin{cases} s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \end{pmatrix} \right\} \\ = \begin{cases} s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \\ \Delta s \end{pmatrix} \right\} \\ = \begin{cases} s \\ \Delta s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \\ \Delta s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \\ \Delta s \\ \Delta s \end{pmatrix} \left\{ s \\ \Delta s \\$$

where

$$\begin{split} s &\equiv |V_{cs}|^2 s + |V_{cd}|^2 d \\ \xi &= \frac{Q^2}{2P_p \cdot q} \left(1 + \frac{m_c^2}{Q^2}\right), \quad \xi' = \frac{Q^2}{2p_{s,g} \cdot q} \left(1 + \frac{m_c^2}{Q^2}\right), \quad \zeta = \frac{p_{s,g} \cdot p_c}{p_{s,g} \cdot q} \\ \left\{\frac{\mathcal{F}_1^c}{\mathcal{G}_3^c}\right\} &= \left\{\frac{\mathbf{F}_1^c}{-\mathbf{g}_3^c}\right\}, \quad \left\{\frac{\mathcal{F}_3^c}{\mathcal{G}_1^c}\right\} = \frac{1}{2} \left\{\frac{-\mathbf{F}_3^c}{g_1^c}\right\}, \quad \left\{\frac{\mathcal{F}_2^c}{\mathcal{G}_4^c}\right\} = \frac{1}{2\xi} \left\{\frac{\mathbf{F}_2^c}{-g_4^c}\right\} \end{split}$$

Unpolarized Cross Section

 $\nu + \vec{p} \rightarrow l^- + D + X$

 $E_{\nu} = 50 \,\mathrm{GeV}$

Polarized Cross Section

$$\nu + \vec{p} \rightarrow l^- + D + X$$

 $E_{\nu} = 50 \,\mathrm{GeV}$

Polarized Cross Sections

PDFs Model Dependence

Spin Asymmetry A^D and $A^{\overline{D}}$

- **PDFs Model Dependence** $E_{\nu} = 50 \,\text{GeV}$
 - Big difference among parametrizations can be seen.
 - A^D at large x region dominated by Δd_v .
 - $A^{\overline{D}}$ might be promising for extraction of Δs .

 $\nu + \vec{p} \rightarrow l^- + D + X$

$$\overline{\nu} + \overline{p} \longrightarrow l^+ + \overline{D} + X$$

V. Conclusion

- $D\overline{D}$ production in neutrino-induced CC DIS is studied including O(α_s) NLO corrections.
 - The cross sections are dominated by Born and NLO bosongluon fusion process.
 - The parametrization model dependence on the asymmetry is quite large, and the behavior for the LSS are especially different among other parametrizations.
- \overline{D} production is promising to extract the strange quark density, since the valence Δd_v quark contribution is large in D production.

If $\Delta g(x, Q^2)$ is determined by RHIC experiment with high accuracy, we can directly extract the strange sea $\Delta s(x, Q^2)$.