Hypernuclear γ-ray spectroscopy at J-PARC

Takeshi Koike Tohoku University for the Hyperball-J collaboration

•Pre J-PARC: Hyperball experiments •At J-PARC: Hyperball-J

- E13 (γ -ray spectroscopy of light hypernulei) •⁴_{Λ}He,⁷_{Λ}Li,^{10,11}_{Λ}B,¹⁹_{Λ}F

•Summary

E13 experimental setup at J-PARC by K.Shirotori

Tohoku University: Y. Fujii, K. Futatsukawa, O. Hashimoto, K. Hosomi, H. Kanda, M. Kaneta, T. Koike, Y. Ma,
K. Maeda, A. Matsumura, M. Mimori, S.N. Nakamura, K. Nonaka, Y. Okayasu, T. Suzuki, K. Shirotori, <u>H. Tamura</u>,
K. Tsukada, M. Ukai

KEK: K. Aoki, Y. Kakiguchi, T. Nagae, H. Noumi, Y. Sato, M. Sekimoto, H. Takahashi, T. Takahashi, A. Toyoda

Joint Institute for Nuclear Research, Dubna: P. Evtoukhovitch, V. Kalinnikov, W. Kallies, N. Kravchuk, A. Moiseenko, D. Mzhavia, V. Samoilov, Z. Tsamalaidze, O. Zaimidoroga

China Institute of Atomic Energy: Y.Y. Fu, C.B. Li, X.M. Li, J. Zhou, S.H. Zhou, L.H. Zhu

University of Houston: E.V. Hungerford, A. Lan (+ a postdoc and 2 graduate students)

University of Torino and INFN Torino: T. Bressani, S. Bufalino, L. Busso, D. Faso, A. Feliciello, S. Marcello

Kyoto University: S. Kamigaito, K. Imai, K. Miwa, K. Tanida

University of Tokyo: H. Fujioka, D. Nakajima, T.N. Takahashi

Florida International University: P. Markowitz, J. Reinhold

Gifu University: K. Nakazawa, T. Watanabe

GSI: S. Minami, T.R. Saito

ITEP, Russia: A. Krutenkova, V. Kulikov

Brookhaven National Laboratory: R.E. Chrien

INAF-IFSI and INFN Torino: O. Morra

Japan Atomic Energy Agency: P.K. Saha

Osaka Electro-Communication University: T. Fukuda

Osaka University: S. Ajimura

Pusan University: J.K. Ahn

Seoul National University: H.C. Bhang

Torino Polytechnic and INFN: M. Agnello

Hyperball-J collaboration 20 institutes, 79 scientists

Hypernuclear γ-ray spectroscopy

Experimental method: particle-y coincidence

Reaction: $(\pi^+, K^+\gamma)$, $(K^-, \pi^-\gamma)$

Magnetic spectrometer systems (resolution ~3MeV)

- K6-SKS at KEK, D6 at BNL, K1.8-SksMinus at J-PARC
- Event by event reaction tagging
- Missing mass \rightarrow
 - identification of bound hypernuclear states
 - Hyperfragments

 $- {}^{16}_{\Lambda}O \rightarrow p + {}^{15}_{\Lambda}N, {}^{10}_{\Lambda}B \rightarrow p + {}^{9}_{\Lambda}Be, {}^{10}_{\Lambda}B \rightarrow {}^{3}He + {}^{7}_{\Lambda}Li, {}^{12}_{\Lambda}C \rightarrow p + {}^{11}_{\Lambda}B$

γ-ray detector array (resolution ~2keV)

- superb resolving power \rightarrow spin-doublet splitting ~100keV
- Hyperball, Hyperball2, Hyperball-J

particle- γ - γ coincidence at J-PARC

Spectroscopic information

• Energy level schemes

Energy level spacing $\rightarrow \Lambda N$ interaction

Spin dependent force (spin-spin, spin-orbit, tensor)

 $\Sigma N\text{-}\Lambda N$ coupling and the three-body force

Angular distribution/correlation

Linear polarization

transition multipolarity \rightarrow relative spin and parity

• Life time measurement of excited states

Reduced transition probability → direct information on wave functions

- B(E2) → hypernuclear size, deformation, collectivity B(E2;5/2→1/2) in $^{7}{}_{\Lambda}$ Li
- $\begin{array}{l} B(M1) \rightarrow \text{magnetic moment, single particle aspect} \\ \text{Attempted, but yet to be measured} \end{array}$

⁴_ΛHe: Spin dependent Charge symmetry breaking (CSB) in ΛN interaction

- Lightest mirror hypernuclei $\rightarrow \Delta B_{\Lambda}$ direct measure of $\Delta E_{csb,\Lambda N}$: $\Delta B_{\Lambda} \approx \Delta E_{csb,\Lambda N}$ $\Delta B_{\Lambda} = B_{\Lambda} ({}^{4}_{\Lambda}He) - B({}^{4}_{\Lambda}H) = 350 \pm 70 keV$ $\Delta E_{\Lambda} = E({}^{4}_{\Lambda}He;1^{+}) - E({}^{4}_{\Lambda}H;1^{+}) = 270 \pm 160 keV$
- CSB effect in NN interaction calculated from ³H and ³He $\Delta E_{csb,NN} \approx 80 \text{keV}$ (*Faddeeve calculations, Y.Wu et. al., PRL 64 1875 (1990)*)

A few times larger CSB effect in AN than in NN ??

Charge-asymmetry effects	δΕ
Static Coulomb ($E_{C,MI}$)	648 ± 4
Magnetic interaction	10 ± 1
Vacuum polarization	4
Orbit-orbit interactions	9 ± 1
Kinetic energy due to	
<i>n-p</i> mass difference	11
$\delta E_{ m other}$	34 ± 2
CIB and CSB forces $({}^{1}S_{0})$	75 ± 7
CSB other than ${}^{1}S_{0}$	2
Uncertainty from V_{phe}	1±1
δE_{CSB}	78±8
Total (theory)	760 ± 14
Experiment	764

$^{7}{}_{\Lambda}\text{Li: B(M1)}$ measurement and Λ in nucleus

In the weak coupling limit between Λ and the core nucleus

$$B(M1)\left[\mu_N^2\right] \propto \left\langle J = 3/2 \|\mu\|J = 1/2\right\rangle^2 \propto (g_\lambda - g_C)^2$$

 $\mu = g_{\Lambda} J_{\Lambda} + g_{C} J_{C} \Big|_{g_{\Lambda},g_{c}}: \text{ Effective } g \text{ factor of } \Lambda \text{ and core nucleus, respectively} \\ J_{\Lambda}, J_{c}: \text{ Total spin of } \Lambda \text{ and core nucleus, respectively}$

${}^{10}_{\Lambda}$ B: the puzzle

○ △ = 0.43 MeV S_N = −0.4 MeV S_∧ = −0.01 MeV T = 0.03 MeV Shell model prediction $0.578 \Delta + 1.41 S_{\Lambda} + 0.014 S_{N} - 1.07 T + \Lambda \Sigma$ -15keV 195keV **Experimentally not observed:** (1) E_{γ} below experimental sensitivity $\rightarrow E_{\gamma} < 100 \text{keV}$ • $\Delta < 0.3$ • $\Lambda\Sigma >> -15 \text{keV}$ better wave function for ⁹B (2) 2^{-} (non spin-flip) and 1^{-} (spin-flip) reversed in energy • $p_k = 0.8 \sim 0.93 \text{GeV/c}$ (BNL E930) \rightarrow non spin-flip population • $p_k = 1.8 \text{GeV/c}$ (E13 J-PARC) \rightarrow spin flip/non spin flip

¹¹_AB: Most complex p-shell hypernucleus

- 6 γ rays observed
 - 2 transitions assigned (E581, E566 @ KEK)
- ¹⁰B: odd-odd core
 - many low-lying energy levels → many hypernuclear bound states

•Consistency check for Δ , S_{Λ} , S_{N} , and T parameters •Test of J-PARC beam intensity & Hyperball-J setup via γ - γ coincidence measurements

γ-ray spectroscopy of sd-shell hypernuclei

- Substitutional states unbound
 hyperfragments
- Increased complexity away from closed shells
 - large basis space for shell model calculations
 - demography of core nuclei
 - collective degree of freedom
 - core deformation
 - \rightarrow drastic change by the presence of Λ ?

 $^{19}\Lambda \mathbf{F}$

- Core ¹⁸F [¹⁶O + p+n] – shell model effective
 - simplest to study
 - first *sd*-nucleus to be studied
- Radial dependence of AN spin-dependent interaction
 - sensitive to interaction range

Summary

- γ-ray spectroscopy of light hypernucleus at the J-PARC initial phase experiments (E13)
- Towards complete spectroscopic studies of s- and pshell hypernuclei
 - Re-measurement of ${}^{4}_{\Lambda}$ He $E_{\gamma}(1^+ \rightarrow 0^+)$ with ~0.5% accuracy
 - B(M1) measurement in $^{7}_{\Lambda}$ Li
 - Energy level schemes for ${}^{10}_{\Lambda}B$ and ${}^{11}_{\Lambda}B$
- Structural study of *sd*-shell hypernuclei ${}^{19}{}_{\Lambda}F$

More complete data for theoretical investigation