Setup for hypernuclear gamma-ray spectroscopy at the J-PARC K1.8 beam line

Department of Physics, Tohoku Univ. K. Shirotori for the Hyperball-J collaboration

Contents

- Introduction
- Magnetic spectrometer : SksMinus
- \triangleright γ -ray detector array : Hyperball-J
- ➤ Summary

Introduction

E13 Day-1 experiment at J-PARC

Several light hypernuclear γ -ray spectroscopy experiments are planned.

Optimized magnetic spectrometer + Hyperball-J

Magnetic spectrometer -SksMinus-

Previous SKS setup

 Incident beam direction
 Size and placement of detectors at the exit of the SKS magnet

1.05 GeV/c (π^+ , K⁺) reaction (K⁺ 0.72 GeV/c)

Momentum resolution	0.1%FWHM (0.72 MeV/c) @ 720 MeV/c, 2.2T
Acceptance	100 msr @ 0.72GeV/c
Maximum central momentum	1.0 GeV/c @ 2.7T

Previous SKS setup

 Incident beam direction
 Size and placement of detectors at the exit of the SKS magnet

1.05 GeV/c (π^+ , K⁺) reaction (K⁺ 0.72 GeV/c)

Momentum resolution	0.1%FWHM (0.72 MeV/c) @ 720 MeV/c, 2.2T
Acceptance	100 msr @ 0.72GeV/c
Maximum central momentum	1.0 GeV/c @ 2.7T

SksMinus setup

For the beam condition
> Determination of incident beam angle (20 degree)
> Larger drift chamber

SksMinus setup

(K⁻, π^-) reaction @ $p_K = 1.5 \text{ GeV/c} \Rightarrow \text{Analyze } 1.4 \text{ GeV/c} \pi^-$

Drift chamber and TOF counter

To keep the large acceptance

Simulation results of acceptance and momentum resolution

Background events : Beam decay

Beam decay veto counters PiZero Veto **Muon Filter** SKS Scinti Scintillation for counters charge veto SDC3 STOF Iron Target K^{-} To SKS γ 700mm Scintillation π^{-} (absorbed in the iron) counters Scinti SDC4 μ^{-} (passing through) for charge veto SMF

86% of μ⁻ν events detected
Others rejected (stopped in the iron) by offline analysis
Totally > 99.9 %
> Over kill for true π ~2.5%

80% of $\pi^-\pi^0$ events detected **10 sets of 3 mm lead plate and 8 mm scintillation counter layer** at 1.5 GeV/c beam.

Sufficient performance to reduce the trigger rate and background

K. Shirototi ini ur ur Z

New Ge detector with Mechanical cooling

Mechanical cooler ⇒Suppression of the radiation damage effect with Ge crystal below 85 K (Liquid nitrogen cooling ~90 K)

R&D in KEK and Tohoku Univ.

Cooling power

Ge crystal temperature less than 85K when biased

Low mechanical vibration for 2 keV energy resolution Minimization of microphonics noise

K. Shirotori NP07 6/2 Compressor

Background suppressor : PbWO₄

The PWO crystal has very first decay constant ~6 ns. (~300 ns for BGO)

But small light yield (PWO/BGO=1/10)

➤ Cooling of PWO below 0°C

Waveform readout

To improve energy resolution and recover rejected events at high counting rates

- Baseline shift restoration
- Pile-up signal decomposition

Pulse height ADC ⇒ Sampling ADC (waveform digitization) (after shaping)

Waveform readout

To improve energy resolution and recover rejected events at high counting rates

- Baseline shift restoration
- Pile-up signal decomposition

In the LNS test experiment, the positron beam is irradiated to Ge detector to make frequent baseline shits by reset signal.

 \Rightarrow The restoration of the baseline shits

 $3.7 \text{ keV} \Rightarrow 3.1 \text{ keV}$ (FWHM) (2.6 keV w/o beam) Pulse height ADC ⇒ Sampling ADC (waveform digitization) (after shaping)

Summary

> J-PARC E13 experiment by the (K⁻, π ⁻) reaction @ $p_K = 1.5 \text{ GeV/c}$

- Optimal magnetic spectrometer
- New Hyperball system for the high counting rate
- Magnetic spectrometer, SksMinus and newly constructed array, Hyperball-J

SksMinus performance

- More than 100 msr acceptance and 20 degree coverage
- ~2 MeV/c momentum resolution

Hyperball-J

- ~6 % efficiency
- Mechanical cooling system
- PWO counter
- Waveform readout

The experiment will be performed in 2009.

Particle identification

Reaction ID by BAC and SAC (n=1.03) @ trigger

Rejection of K⁻ beam through background SAC ~98% + Beam veto (SFV) STOF : Time resolution ~150 ps (rms)

(K⁻, π ⁻) reaction

Large production rate (/beam)

Large elementary cross section, $n(K^-, \pi^-)\Lambda$: order of mb

> $n(\pi^+, K^+)\Lambda$: ~10² µb, p(e, e'K⁺) Λ : ~1 µb

Large sticking probability

Angular selectivity

Small momentum transfer

 $\theta \sim 5^{\circ} \sim 100 \text{ MeV/c} : \Delta L = 0$

 $\theta \sim 10^{\circ} \sim 200 \text{ MeV/c} : \Delta L = 1 \text{ or } 2 @ 1.5 \text{ GeV/c} \text{ beam}$

Spin-flip cross section exists at large angles ($\theta > 10^\circ$).

More advantages in hypernuclear $\gamma\text{-ray}$ spectroscopy experiment