Structure and production of *p*-shell Ξ -hypernuclei $({}^{12}_{\Xi}Be)$

Satoru Sugimoto *Kyoto University* Toshio Motoba *Osaka Electro-Comm. University* Yasuo Yamamoto *Tsuru University* Emiko Hiyama *Nara Women's University*

Introduction

- Up to now, the experimental information are limited for Ξ hypernuclei as compared to Λ hypernuclei.
- Theoretically, a pioneer work was done by Dover and Gal (Ann. Phys. 146 (1983)) using the existent data at that time.
- The experiments using the (K⁻,K⁺) reaction were performed at KEK (Aoki et al. PLB **355** (1995), Fukuda et al. PRC **58** (1998)) and BNL (Khaustov et al. PRC **61** (2000)). But a definite evidence of the existence of the ± hypernuclei was not obtained.

• $U_{\Xi} \sim -14 \sim -17 \text{MeV}$ (Shallow)

 At JPARC, the experiment of the (K⁻,K⁺) reaction with high intensity is planned to explore \(\pm\) hypernuclei. Doorway to the physics of S=-2!

Purpose of our study

- Studying the structure of E hypernuclei using the shell model with effective interactions deduced from realistic NE interaction models.
- Performing a reaction calculation with the wave functions of the shell model to explore what we can obtain from the experimental data.
- We want to deduce the information about the NE interaction from the forthcoming experiment of E hypernuclei.
 - Strength
 - Spin dependence
 - Isospin dependence (T=0 and T=1)

This method has been quite successful in the study of Λ hypernuclei!

Shell model calculation

- $^{12} \Xi Be (^{11}B + \Xi^{-}) (^{12}C(K^{-}, K^{+})^{12} \Xi Be)$
- Active space for nucleons: *p*-shell orbits
- Acitev space for Ξ : $0s_{1/2}$ and $1s_{1/2}$ orbits
- Effective interaction for nucleons: Cohen-Kurath
- Effective interaction for *N*-Ξ: YNG-type interaction by Yamamoto (*G* matrix, k_F dependence)
 - YN interaction model (V_{N-E}: attracitve)
 - NHC-D (Nagels et al. PRD **15** 2547 (1977))
 - ESC04d (Rijken and Yamamto PRC 73 044008 (2006))
 - Ehime (Yamaguchi et al. PTP 106 627 (2001))
 - Non-central and Coulomb parts are not included.

$$H_{NY} = \underbrace{H_N}_{CK} + \underbrace{t_Y + v_{NY}}_{YNG}$$

Single particle energy ¹²_ΞBe

	$\mathbf{J}\pi$	Τ	k _F	t _Y	U _Y	t _Y +U _Y
$NHC-D(\Xi)$	1-1	1	1.05	11.8	-15.3	-3.5
Ehime(Ξ)	1- ₁	1	0.84	10.5	-15.1	-4.5
ESC04d (Ξ)	1- ₁	1	1.08	11.8	-16.1	-4.4
$NS97f(\Lambda)$	1-1	1/2	1.24	10.5	-22.5	-11.9

- k_F in YNG is determined by the condition BE $(\Xi, 1^-, 1) \sim 4.5$ MeV.
- U_E is comparable to the experimental data.
 U_E ~ -14 ~ -17 MeV (Aoki et al. and Yamamoto, Fukuda et al. and Ikeda et al., Khaustov et al.)

p-shell matrix element (ΞN)

$$\left\langle j^{N} 0 s_{1/2}^{\Xi} \left| v_{N\Xi}^{YNG} \right| j^{N'} 0 s_{1/2}^{\Xi} \right\rangle_{JT}$$

Spin and isospin dependence of the ΞN interactions

$$V_{NY} \sim -\overline{V} + \Delta \sigma \Box \sigma$$

	Т	Vb	$\Delta(\sigma \cdot \sigma)$	η (Δ/Vb)
N-E NHC-D	0	2.14	4.75	2.23
	1	1.55	0.79	0.51
	0	1.87	1.20	0.64
N-E Enime	1	1.49	-1.22	-0.82
N-E ESC04d	0	4.98	-15.81	-3.18
	1	0.30	-2.96	-9.88
N-Λ NSC	1/2	1.36	1.16	0.86

- Δ for N- Ξ is larger than that for N- Λ .
- ESC04d gives large Δ.
- ∆ for ESC04d and NHC-D have opposite signs.

- NHC-D: $V\sigma\sigma(T=1)$ and $V\sigma\sigma(T=0)$ are added up coherently
- Ehime: $V\sigma\sigma(T=1)$ and $V\sigma\sigma(T=0)$ cancel out
- ESC04d: Vσσ (T=1) and Vσσ (T=0) are added up coherently, but the sign is opposite to ones for NHC-D

- The binding energies of the T=0 states for ESC04d is larger than those in the T=1 state by about 5MeV.
- It is interesting to study the isospin dependence of the NE interaction.

DWIA cal. ${}^{12}C(K^-,K^+){}^{12}_{\Xi}Be$

We calculated the effective proton number in the DWIA approximation.

$$\frac{d\sigma(\theta)}{d\Omega_{L}} = \alpha \left[\frac{d\sigma(\theta)}{d\Omega_{L}} \right]_{K^{-}p \to \Xi^{-}K^{+}} Z_{\text{eff}}^{\text{SM}}(i \to f; \theta)$$

(K⁻,K⁺) reaction

- Large momentum transfer (~500MeV/c@p_{K-}=1.7GeV/c)
 - ->J-stretched states are populated strongly.
- Isospin transfer 1 ($p(t_z=1/2-\Xi^-(t_z=-1/2))$)

$$[0p^{-1}\Xi 0s]_{J^{\pi}=1^{-},T=1}$$

T=1, 1⁻ state in ${}^{12}_{\Xi}$ Be

 $(P(^{11}B(3/2^{-}_{1})\otimes \Xi 0s_{1/2}), P(^{11}B(1/2^{-}_{1})\otimes \Xi 0s_{1/2}), P(^{11}B(3/2^{-}_{2})\otimes \Xi s0_{1/2}))$

- In the ¹²C(K⁻,K⁺)¹²₂Be reaction, T=1,1⁻ states are strongly populated.
- Wave functions strongly depend on the N-E interaction.

Excitation Function Ehime

Excitation Function ESC04d

Comparison of excitation functions NHC-D Ehime

- Cross Section (arbitrary unit) $^{12}C(K^{-}, K^{+})^{12}Be$ 1^{-} 1.0 $p_{\rm K}$ =1.7 GeV/c T=1 0.8 0=0 deg $2^{-}(T=0)$ V_{IIN} (Ehime) GS 0.6 1^{-} 0.4 0.2 Diff. 0. 0 10 -15 -10 -5 0 5 15 (MeV) EXCITATION ENERGY E_{\pm}
- Excitation spectra reflect the character of the N-Ξ interactions

Conversion width (N Ξ - $\Lambda\Lambda$)

	1_{1}	-	12-		
	BE(MeV)	Γ(Mev)	BE(MeV)	Γ(MeV)	
NHC-D	4.50	-2.04	1.55	-1.32	
Ehime	4.50	-1.19	2.69	-1.13	
ESC04d	4.51	-8.83	1.50	-9.09	

 Calculated using the imaginary part of the YNG interactions with the shell model wave functions.

Summary

- We performed the shell model calculation for ¹²_ΞBe using the N-Ξ interactions, NHC-D, Ehime and ESC04d.
 - The level schemes and wave functions are different for the different interactions.
- Using the shell model wave functions we calculated the excitation functions of the ¹²C(K⁻,K⁺)¹²_EBe reaction in the DWIA approximation.
 - The excitation functions reflect the character of the N-Ξ
 - interactions
 - \rightarrow Possibility of the exploring the N- Ξ interaction