Perspective for the Measurement of Ξ⁻ atomic X rays at J-PARC

XiX Collaboration Spokesperson: K. Tanida (Kyoto Univ.) NP07@Tokai 2/June/2007

Collaboration

- Kyoto University
 - S. Dairaku, H. Fujimura, T. Hiraiwa, K. Imai, K. Miwa, A. Okamura,
 K. Tanida (spokesperson), C. J. Yoon
- Brookhaven National Laboratory
 - R. E. Chrien
- China Institute of Atomic Energy
 - Y. Y. Fu, C. P. Li, X. M. Li, J. Zhou, S. H. Zhou, L. H. Zhu
- Gifu University
 - K. Nakazawa, M. Ukai, T. Watanabe,
- KEK
 - H. Noumi, Y. Sato, M. Sekimoto, H. Takahashi, T. Takahashi, A. Toyoda
- JINR(Russia)
 - E. Evtoukhovitch, V. Kalinnikov, W. Kallies, N. Karavchuk,
 - A. Moissenko, D. Mzhavia, V. Samoilov, Z. Tsamalaidze,
 - O. Zaimidoroga
- Tohoku University
 - O. Hashimoto, K. Hosomi, T. Koike, Y. Ma, M. Mimori, K. Miwa, K. Shirotori, H. Tamura

Outline of the experiment

• The first measurement of X rays from Ξ -atom

– Gives direct information on the ΞA optical potential

 Produce Ξ⁻ by the Fe(K⁻,K⁺) reaction, make it stop in the target, and measure X rays.

• Aiming at establishing the experimental method

Physics Motivation

- strangeness nuclear physics at S=-2
 - A doorway to the multistrangeness system
 - Very dynamic system?
 - Large baryon mixing? Inversely proportional to mass difference.
 - H dibaryon as a mixed state of ΛΛ-ΞΝ-ΣΣ?
- Little is known so far
 → Main motivation of
 the J-PARC

Importance of Ξ systems

- Valuable information on ΞN (effective) interaction
 - e.g., How strong $\Xi N \rightarrow \Lambda \Lambda$ (and thus $\Xi N \cdot \Lambda \Lambda$ mixing) is?
 - Relevant to the existence of H dibaryon
 - ΞN component in $\Lambda\Lambda$ -hypernuclei
 - Exchange interaction is prohibited in one-meson exchange models
- How about A dependence?
- Impact on neutron stars
 - Does Ξ⁻ play significant role in neutron stars because of its negative charge?
 - Σ^- was supposed to be important, but its interaction with neutron matter is found to be strongly repulsive.

Real part – energy shift, Imaginary – width, yield Regardless of potential: attractive/repulsive, wide/narrow Successfully used for π^- , K⁻, \overline{p} , and Σ^-

Selection of targets

- Physics view: Batty et al. PRC59(1999)295
 - For given state, there is optimal target
 - Nuclear absorption is reasonably small
 - X-ray energy shift and width are the largest (~1 keV)
 - They suggested $_9F$, $_{17}CI$, $_{53}I$, and $_{82}Pb$ for n=3,4,7,9.

n:4 → 3	5→4	6→5	7→6	8→7	9→8	10→9
F(Z=9)	CI(17)	Co(2 7)?	Y(3 9)?	l(53)	Ho(6 7)?	Pb(82)
131 (keV)	223	3124?	3994?	475	51?8?	558

The choice depends on the optical potential itself
 → We can't know before the 1st experiment

For the 1st experiment

- We chose Fe (Iron) because of (mostly) experimental reason
 - Production rate: $A^{-0.62}$ as cross section scales with $A^{0.38}$
 - Stopping probability: requires high target density (Ξ^- range: 10-20 g/cm², $\beta\gamma c\tau \sim 2cm$)
 - X-ray absorption: significant at large Z
 - \rightarrow Small Z(A), yet high density
- Koike calculated the energy shift (width) & yield of the Fe X ray (n=6 → 5)
 - Woods-Saxon potential: -24 3i MeV
 - Energy shift: 4.4 keV, width: 3.9 keV
 - Yield per stopped Ξ^- : 0.1 (~0.4 without absorption)

Experimental Setup

K1.8 beamline of J-PARC

(K⁻,K⁺) detection system

- Mostly common with Hybrid-Emulsion experiment
- Long used at KEK-PS K2 beamline (E373, E522, ...)
 - Minor modification is necessary to accommodate high rate.
- Large acceptance (~0.2 sr)

X-ray detection

Hyperball-J

- 40 Ge detectors
- PWO anti-Compton
- Detection efficiency
 16% at 284 keV
- High-rate capability
 < 50% deadtime
- Calibration
 - In-beam, frequent
 - Accuracy ~ 0.05 keV
- Resolution
 - ~2 keV (FWHM)

Yield & sensitivity estimation

- Total number of K⁻: 1.0x10¹² for 100 shifts.
- Yield of Ξ
 - production: 3.7×10^6
 - stopped: 7.5×10^{5}
- X-ray yield: 2500 for $n=6\rightarrow 5$ transition
 - 7200 for n=7→6
- Expected sensitivity
 - Energy shift: ~0.05 keV (systematic dominant)

→ Good for expected shift (~1 keV, 4.4 keV by Koike) < 5% accuracy for optical potential depth</p>

- Width: directly measurable down to ~ 1 keV
- X-ray yield gives additional (indirect) information on absorption potential.

Expected X-ray spectrum

$$n=6\rightarrow 5$$

shift & width 0 keV

Expected X-ray spectrum(2) (a) $(6,5) \rightarrow (5,4)$

shift & width 4 keV

Double Λ hypernuclear γ ray

• Good byproduct: possible to observe if intensity is larger than a few %/stopped Ξ

→ Expected to be seen

- Calc. by Hirata et al. [nucl-th/9711063]
 0.11 (0.44) double (single) hypernuclei per stopped Ξ on C target → similar (or even larger) on Fe
- L~5 is brought by $\Xi \rightarrow$ hypernuclei should be excited
- Issue: no systematic way for identification
 - Backgrounds from normal nuclei are (probably) distinguishable.
 - Q value is small, so only a few baryons $(n/p/\Lambda)$ can escape \rightarrow limited number of possible hypernuclei.
 - $-\gamma\gamma$ conicidence measurement possible

e.g. ${}^{53}_{\Lambda\Lambda}$ Mn

- Core nucleus is ⁵¹Mn
 - High spin states are preferably produced
 - Level energies are similar for low-lying states (2 Λ 's are in 0s orbits) \rightarrow identifiable by $\gamma\gamma$

Status and Prospects

- Stage1 approval (scientific approval) is already granted at the PAC meeting of J-PARC
 - No essential difficulty
 - Trying to get Stage-2 (full) approval as soon as possible
- We will be ready by 2008
 - The first experiment is (hopefully) in 2010
- Final goal: > 2 targets for each n
 - ~10 targets in total
 - Select next targets based on the first experiment.
 - Not only strength, but also shape can be determined.
 - 1-2 weeks for each target (if everything is as expected)

• New collaborators are very welcome!

Summary

- We propose to measure Ξ -atomic X rays
 - To determine Ξ -A optical potential
 - First of the series of experiments
 - Aiming to establish the method
- Scientific approval is granted for the 1st experiment
 Iron (Fe) target is used
- X-ray yield: ~2500
- Precision of X-ray energy ~ 0.05 keV
 - Good accuracy for expected energy shift (~1 keV)
 - Width: measurable down to ~ 1 keV, X-ray yield gives additional information on imaginary part.
- 1st experiment will be in 2010, more will follow.

Backup slides

X-X coincidence

- Measurement for the branching ratio of X-ray emission independent of atomic cascade model
- Gives ~12 better S/N ratio
- Statistics: ~60 events

Summary of the experiment

 Produce Ξ⁻ by the (K-,K+) reaction, make it stop in a Fe target, and measure X rays from Ξ⁻ atom.

- Physics:
 - Ξ -nucleus interaction (optical potential)
 - Real part shift of X-ray energy (up to ~10 keV)
 Imaginary part width, yield
- Sensitivity
 - X-ray energy shift: ~0.05 keV

→ Good for expected shift of O(1keV)

Width: directly measurable down to ~ 1keV

Yield estimation

 $Y=N_{K} x \sigma_{\Xi} x t x \Omega_{K} x \varepsilon_{K} x R_{\Xi} x R_{X} x (1-\eta_{X}) x \varepsilon_{X} x \varepsilon_{o}$

- Beam: N_{K} (total number of K-) = 1.0×10^{12}
- Target:
 - σ_{Ξ} : (differential) cross section = 180 µb/sr Taken from IIjima et al. [NPA 546 (1992) 588-606]
 - t: target thickness (particles/cm²) = 2.6×10^{23}
 - R_{Ξ} : stopping probability of Ξ in the target = 20% (according to a GEANT4 simulation)
 - R_X: branching ratio of X-ray emission = 10% (estimated by Koike)
 - η_X : probability of self X-ray absorption in the target = 58% (GEANT4 simulation: mean free path for 284 keV X-ray is ~8 mm)

- K+ spectrometer
 - $\Omega_{\rm K}$: acceptance = 0.2 sr
 - ε_K: detection efficiency = 0.51
 (taken from the proposal of BNL-AGS E964)
- X-ray detection
 - ε_X : X-ray detection efficiency = 8% [16% (GEANT4 simulation) x 0.5 (in-beam live time)]
 - Others
 - ε_{o} : overall efficiency (DAQ, trigger, etc.) = 0.8

X-ray background

- Estimation based on E419
- E419: 8 x 10⁻⁵ counts/keV/(π⁺,K⁺), around 284 keV
 - X-ray detection efficiency: x4
 - Other effect: x2 (considering different reaction)
 - → ~2400 counts/keV
- Continuous BG is OK
- Line background might be a problem, though unlikely.
 - there seem no strong lines in this energy from normal nuclei around A=50.
 - Completely unknown for (single) hypernuclei
 - Even weak lines may deform the peak shape

Expected X-ray spectrum

(b) $(6,5) \rightarrow (5,4)$ Counts/0.5keV shift.width=0keV 340 360 Energy (keV)

Schedule & budget

- Beamline detectors (~100 Myen):
 - Will be constructed by Kakenhi grant "Quark many-body systems with strangeness" (2005-2009)
 - Commonly used with other experiments
- KURAMA
 - Mostly reuse of the existing spectrometer.
 - New Cerenkov counter will be made in 2007.
- Hyperball-J (~300 Myen)
 - Will be constructed by Tohoku University with the Kakenhi grant.
- Construction & installation will finish by 2008.