Pion and Kaon Polarizability Measurements at J-PARC

Itaru Nakagawa

RIKEN

and Tanja Horn Jefferson Laboratory

Polarizability

Rigidity response of object to the external electromagnetic field

Polarizability:分極率

Polarizability of Proton

External Elemag Field→ Compton Scattering

Electric Polarizablity $\mathbf{P}_{E} = 4\pi \alpha_{E} \mathbf{E}$

Magnetic Polarizability $\mu_{M} = 4\pi \beta_{M} H$

Probes internal structure

Probing Dynamic Response of Object Through Polarizability

Measurement of Meson Polarizabilities

High Precision Experiment Via Primakoff

Radiative Meson Scattering

Kinematical Separation of Background and Signal is possible Golden Channel for Meson Polarizability Measurement

Existing Radiative Meson Scattering Experiment

SIGMA spectrometer @ IHEP, Russia

• $E_{\pi} = 40 \text{GeV}$ • $60 < E_{\gamma} < 600 \text{ MeV}$ • 2×10^{11} Integrated π^{-} beam • 6×10^{3} Primakoff events

$$\begin{split} & \chi \text{PT Predictions} \\ & \text{Amp}(\gamma \pi \rightarrow \gamma \pi) = \hat{\epsilon}_{1} \cdot \hat{\epsilon}_{2} \left[-\frac{\alpha}{m_{\pi}} \left\{ 1 - \frac{1}{6} \left\langle r_{\pi}^{2} \right\rangle \left(q_{1}^{2} + q_{2}^{2} \right) \right\} + \omega_{1} \omega_{2} \alpha_{\pi} \right] + \hat{\epsilon}_{1} \times q_{1} \cdot \hat{\epsilon}_{2} \times q_{2} \beta_{\pi} \\ & \alpha_{\pi} = \frac{4\alpha}{m_{\pi} F_{\pi}^{2}} \left[L_{9} + L_{10} \right] \qquad \alpha_{\pi} + \beta_{\pi} = 0 \\ \hline \frac{\text{Reaction} \qquad \text{Observable} \qquad \chi - \text{PT}}{\gamma - > \pi^{+} \pi^{-}} \qquad < t^{2}_{\pi} > (\text{fm}^{2}) \qquad 12L_{9} / F_{\pi}^{2} \\ & \pi^{+} - > e^{+} v_{e} \gamma \qquad \qquad h_{N} (m_{\pi}^{-1}) \qquad N_{e} \gamma_{12} \sqrt{2} \pi^{2} F_{\pi} |_{N_{e}=3} \\ \hline \frac{\pi^{+} - > e^{+} v_{e} e^{+} e^{-} \qquad r_{A} / h_{V} \qquad 32\pi^{2} L_{9} \\ & \gamma \pi^{+} - > \gamma \pi^{+} \qquad \qquad (\alpha_{\pi} + \beta_{\pi})(10^{-4} \text{ fm}^{3}) \qquad 0 \\ & \gamma \pi^{+} - > \gamma \pi^{+} \qquad \qquad (\pi^{-1} + m^{-1}) \qquad 4\alpha / (m_{\pi} F_{\pi}^{2}) (L_{9} + L_{10}) \\ \hline \end{array}$$

 $h_{\rm A}$: Axial Structure Constant $h_{\rm V}$: Vector Structure Constant

Chiral SU(2) Predictions and Data

$\alpha_{\pi} = \frac{4\alpha}{m_{\pi}F_{\pi}^2} \left[L_9 + \frac{4\alpha}{m_{\pi}F_{\pi}^2} \right]$	$-L_{10}$] $F_{\pi} = 92.4$	4 ± 0.2 [MeV] : Pion Decay Const.
	$\pi^+ \rightarrow e^+ V_e \gamma$	
$\frac{h_A}{h_V} = 32\pi^2 (L_9 -$	$+L_{10})=0.46$	$\alpha_{\pi} = 2.7 \pm 0.4 \times 10^{-7}$

		* Used as input	
Reaction	Quantity	$\chi-PT$	Exp.
$\gamma \longrightarrow \pi^+\pi^-$	< <i>r</i> ² _π > (fm ²)	0.44*	0.44±0.02
$\pi^+ \rightarrow e^+ v_e \gamma$	$h_{v}(m_{\pi}^{-1})$	0.027	0.029±0.017
	$h_{\rm A}$ / $h_{ m v}$	0.46*	0.46±0.08
$\pi^+ \rightarrow e^+ v_e e^+ e^-$	$r_{\rm A}/h_{\rm V}$	2.6	2.3±0.6
γπ ⁺ > γπ ⁺	$(lpha_{\pi}+eta_{\pi})(10^{-4} \text{ fm}^3)$	0	1.4±3.1
	$lpha_{\pi}(10^{-4}~{ m fm^3})$	2.7	6.8±1.4

 χ -PT has been proven to be very successful in low energy

Higher Order Corrections

J.F.Donoghue, B.R. Holstein, Phys. Rev. D40, 2378(1989)

$$\alpha_{\pi} \xrightarrow{t \to 0} \frac{4\alpha}{m_{\pi} F_{\pi}^{2}} [L_{9} + L_{10}] = (2.7 \pm 0.4) \times 10^{-4}$$

Two-Loop ($\alpha_{\pi} = (2.4)$ $\beta_{\pi} = (-2.4)$ Hig

Two-Loop Correction U. Burgi, Nucl. Phys. B479, 392 (1997)) $\alpha_{\pi} = (2.4 \pm 0.5) \times 10^{-4}$ $\beta_{\pi} = (-2.1 \pm 0.5) \times 10^{-4}$

Higher order corrections are predicted to be Small

Existing Data of π^{\pm} Polarizabilities

Reaction	Experiment	$lpha_{\pi}(10^{-4}{ m fm^3})$	$lpha_{\pi} - eta_{\pi} (10^{-4} \mathrm{fm^3})$
π⁻Ζ -> γ π⁻Ζ	IHEP ('83)	6.8±1.4±1.2	
γp -> γ π+n	Levedev Inst. ('84)	20±12	
	Mainz ('05)		11.6±1.5±3.0±0.5
γγ -> π ⁺ π ⁻	PLUTO ('84)	19.1±4.8±5.7	
	DM 1 ('86)	17.2±4.6	
	DM 2 ('86)	26.3±7.4	
	MARK II ('90)	2.2±1.6	
	MARK II ('93)	2.7	
χ-PT (2-loop)		2.4±0.5	4.4±1.0

- The results from several $\gamma\gamma \rightarrow \pi^+\pi^-$ experiments are inconsistent to each other.
- Model dependent extraction from the latest $\gamma p \rightarrow \gamma \pi^+ n$ (Mainz), disagree w/ χ -PT
- New Primakoff experiment is desired to address this issue

Experimental Requirements

- Similar Setup with Sigma Spectrometer @ IHEP
- Ε_π~40 GeV
 - Boosts Primakoff peak to forward angle (Better separation from backgrounds)
 - Enhances Primakoff amplitude
- Calorimeter at zero degrees
- Coincidence with Calorimeter and Compton scattered pion

Summary

- Pion Polarizability is the one of the most fundamental quantity calculable by χ -PT
- Pion Polarizability is one of few low energy observables for χ -PT still in disagreement w/ exp.
- Present situation raises severe question about our understanding of low-energy QCD.
- New Primakoff experiment at J-PARC using high intensity and high momentum pion/kaon beams is a great opportunity to address this problem.

Backup Slides

J. Gasser et al. / Nuclear Physics B 745 (2006) 84-108

Fig. 6. The $\gamma \gamma \to \pi^+ \pi^-$ cross section $\sigma(s; |\cos \theta| \le Z = 0.6)$ as a function of \sqrt{s} . The experimental data are taken from [25].

Chiral SU(2)+SU(3) **Predictions and Data**

Reaction	Quantity	$\chi-PT$	Exp.
$\gamma \longrightarrow \pi^+\pi^-$	$< r_{\pi}^{2} > (fm^{2})$	0.44*	0.44±0.02
$\gamma \longrightarrow K^+K^-$	< <i>r</i> ² _K > (fm ²)	0.44	0.34±0.05
$\pi^+ \rightarrow e^+ v_e \gamma$	$h_{v} (m_{\pi}^{-1})$	0.027	0.029±0.017
	$h_{\rm A}$ / $h_{ m v}$	0.46*	0.46±0.08
$K^{\scriptscriptstyle +} \mathop{{{-}{>}}} e^{\scriptscriptstyle +} \nu_e \gamma$	$(h_{\rm A} + h_{\rm V}) \ ({\rm m_{\pi}}^{-1})$	0.038	0.043±0.003
$\pi^+ -> e^+ v_e e^+ e^-$	$r_{\rm A}/h_{\rm V}$	2.6	2.3±0.6
$\gamma \pi^+ \rightarrow \gamma \pi^+$	$(\alpha_{\pi}+\beta_{\pi})(10^{-4} \text{ fm}^3)$	0	1.4±3.1
	$lpha_{\pi}(10^{-4} \text{ fm}^3)$	2.7	6.8±1.4
$K \rightarrow \pi e^+ v_e$	$\xi = f_{-}(0)/f_{+}(0)$	-0.13	-0.20±0.08
	λ_+ (m ²)	0.067	0.065±0.005
	λ_{-} (m ²)	0.040	0.050±0.012

* Used as input

 $h_{\rm A}$: Axial Structure Constant $h_{\rm V}$: Vector Structure Constant

One-Loop Diagrams @ ChPT

Two-Loop Diagrams @ ChPT

U. Bürgi/Nuclear Physics B 479 (1996) 392-426

