Hyperon-Nucleon and Hyperon-Hyperon Interactions

Meeting on Nuclear Physics at J-PARC, June 1-2, 2007

Th.A. Rijken

IMAPP, University of Nijmegen The Netherlands

University of Nijmegen, june 2007

Introduction

Contents: Topics Baryon-baryon interactions

- I. Flavor Nuclear Physics, QCD and BB-models
- II. Different BB-models,

 χPT -, Meson-exchange-, QCM-models

- III. Recent Extended-Soft-Core BB-Models: OBE, TME, MPE, Pomeron, Form factors
 - a. ESC04 NN interaction, S=0 b. BB and ${}^{3}P_{0}$ Quark-pair creation c. ESC04/06 YN interaction, S=-1, ΛN - spin-orbit interaction d. ESC and YY/YN interaction, S=-2, e.g. Nagara-event, $\Delta B_{\Lambda\Lambda}$

IV. Summary and Prospects

Particle and Flavor Nuclear Physics

Particle and Flavor Nuclear Physics

Th.A. Rijken

University of Nijmegen

NP@J-PARC07: YN and YY Interactions – p.3/58

Introduction

Particle and Flavor Nuclear Physics

- Objectives in Low/Intermediate Energy Physics:
 - 1. Study links Hadron-interactions and Quark-physics (QCD, $SU_F(3)$, QPC)
 - 2. Determination Meson Coupling Parameters <= NN+YN Scattering
 - 3. Construction realistic physical picture of nuclear forces between the octet-baryons: N, Λ, Σ, Ξ
 - 4. Study (Hyper) Nuclear structures:
 - 1. Few-Body systems, e.g. ${}^{2}H, {}^{3}H, {}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H$,
 - ${}^{3}_{\Lambda}He, {}^{4}_{\Lambda}He, {}^{5}_{\Lambda}He, {}^{4}_{\Sigma}He, \text{ and } {}^{6}_{\Lambda\Lambda}He$
 - 2. Many-Body systems: Shell-models, Cluster-models, Star matter
 - CERN, BNL, KEK, TJNAL, FINUDA, J-PARC(2008), FAIR(2012): Analysis and interpretation experimental scattering data and (hyper) nuclei-data
 - 6. Extension to flavor nuclear systems with c-, b-, t-quarks.

Introduction: Modern Physics and QCD

Contemporary View on Low Energy Physics Baryon-baryon Strong Interactions

QCD-world I

QCD-world I: mesons and baryons

- p.6/58

QCD-world II

QCD-world II: Baryon/Meson-baryon Interactions

Competing BB-models

Theory Interest in Flavor Nuclear Physics

- Recent Model building:
 - Nijmegen models: OBE and ESC Soft-core (SC) Rijken, Phys.Rev. C73, 044007 (2006) Rijken & Yamamoto, Phys.Rev. C73, 044008 (2006) Rijken & Yamamoto, arXiv:nucl-th/060874 (2006)
 - 2. Chiral-Unitary Approach model Sasaki, Oset, and Vacas, Phys.Rev. C74, 064002 (2006)
 - 3. Jülich Meson-exchange models Haidenbauer, Meissner, Phys.Rev. C72, 044005 (2005)
 - 4. Jülich Effective Field Theory models Polinder, Haidenbauer, Meissner, Nucl.Phys. A 779, 244 (2006)
 - 5. Quark-Cluster-models: QGE + RGM

Fujiwara et al, Progress in Part. & Nucl.Phys. 58, 439 (2007) Valcarce et al, Rep.Progr.Phys. 68, 965 (2005)

Gluon-Quark-Exchange

$Gluon-Quark-Exchange \Leftrightarrow Meson-Exchange$

• Strong-coupling regime QQ-interaction: Multi-gluon exchange

Quark-Pair-Creation in QCD

Quark-Pair-Creation in QCD \Leftrightarrow Flux-tube breaking

• Strong-coupling regime QQ-interaction: Multi-gluon exchange

Gluon-exchange \Leftrightarrow Pomeron

Gluon-exchange QCD \Leftrightarrow Pomeron-exchange

Gluon-exchange ⇔ Pomeron-exchange

Multiple-gluon model: Low PR D12(1975), Nussinov PRL34(1975) Scalar Gluon-condensate: ITEP-school: $\langle 0|g^2 G^a_{\mu\nu}(0)G^{a\mu\nu}(0)|0\rangle = \Lambda^4_c$, $\Lambda_c \approx 800$ MeV Landshoff, Nachtmann, Donnachie, Z.Phys.C35(1987); NP B311(1988): $\langle 0|g^2 T[G^a_{\mu\nu}(x)G^{a\mu\nu}(0)]|0\rangle =$ $\Lambda^4_c f(x^2/a^2), a \approx 0.2 - 0.3 fm$ QCD-vacuuum: Copenhagen picture, Ambjorn & Olesen, NP B170(1980)

 \Rightarrow LE Pomeron-potential!

Universal Three-body repulsion \Leftrightarrow Pomeron

Universal Three-body repulsion \Leftrightarrow Pomeron-exchange

Soft-core models NSC97, ESC04: (i) nuclear saturation, (ii) EOS too soft Nishizaki,Takatsuka,Yamamoto, PTP 105(2001); ibid 108(2002): NTYconjecture = universal repulsion in BB

Lagaris-Pandharipande NP A359(1981): medium effect \rightarrow TNIA,TNIR Rijken-Yamamoto PRC73: TNR $\Leftrightarrow m_V(\rho)$

NTYR: Multiple-gluon-exchange \leftrightarrow Pomeron + Triple-pomeron!?

Introduction, Acknowledgement

Recent Baryon-baryon ESC Interactions

- Extended-soft-core Baryon-baryon Model ESC04:
 - 1. Meson Dynamics: OBE, TME, MPE
 - 2. Fit NN-, YN- scattering data
 - 3. Analysis Coupling-Constants: QPC, QCD-SR's
- Recent publications ESC-model:
 - I, Nucleon-nucleon Interactions,

Rijken, Phys.Rev. C73, 044007 (2006)

- II, Hyperon-nucleon Interactions, Rijken & Yamamoto, Phys.Rev. C73, 044008 (2006)
- III, S = -2 Hyperon-hyperon/nucleon Interactions, Rijken & Yamamoto, arXiv:nucl-th/060874 (2006)

• Acknowledgement: It is a great pleasure to thank prof. Yamamoto for his important and stimulating collaboration!

• ESC04, Major problems (left): 1. $\Sigma^+ p({}^3S_1, I = 3/2), \Rightarrow \text{ESC06}$ 2. ΛN hypernuclei LS-splttings $\Rightarrow \text{ESC06}$

Baryon-baryon Channels S = 0, -1, -2

BB: The baryon-baryon channels S = 0, -1, -2

Th.A. Rijken

University of Nijmegen

NP@J-PARC07: YN and YY Interactions

– p.15/58

Combined Fit NN-, YN-data and BB-model Construction

Combined Fit NN-, and YN-data and BB-model Building

ESC-model: BB

BB-interactions in the ESC-model:

One-Boson-Exchanges:

pseudo-scalar	π	K	η	η'
vector	ho	K^*	ϕ	ω
axial-vector	a_1	K_1	f_1'	f_1
scalar	δ	κ	S^*	ϵ
diffractive	A_2	K^{**}	f	P

Two-Meson-Exchanges:

Th.A. Rijken University of Nijmegen

NP@J-PARC07: YN and YY Interactions

– p.17/58

ESC-model: BB

BB-interactions in the ESC-model (cont.):

Meson-Pair-Exchanges:

ESC-model

ESC04-NN: Soft-core NN + YN + YY **ESC-model**

- modified PRD17 (1978), PRC40 (1989)
- NN: 20 free parameters: couplings, cut-off's, meson mixing and F/(F+D)-ratio's
- meson nonets:

$$J^{PC} = 0^{-+} \qquad \pi, \eta, \eta', K$$

= 1⁻⁻ ρ, ω, ϕ, K^*
= 0⁺⁺ $a_0(962), f_0(760), f_0(993), \kappa_1(900)$
= 1⁺⁺ $a_1(1270), f_1(1285), f_0(1460), K_1(1430)$

- soft form factors, $exp(-\mathbf{k}^2/2\Lambda_{B'BM}^2) \rightarrow$ "gaussian-yukawa's"
- pomeron exchange \Leftrightarrow multi-gluon / pion exch.
- soft TPS: two-pseudo-scalar exchanges,
- soft MPE: meson-pair exchanges,

 $\pi\otimes\pi,\,\pi\otimes\rho,\,\pi\otimes\epsilon,\,\pi\otimes\omega,$ etc.

- Data fit, 4301 NN-data, 38 YN-data:
- 1. Nucleon-nucleon: pp + np, $\chi^2_{dpt} = 1.15(!)$
- 2. Nucleon-nucleon \oplus Hyperon-nucleon: $\chi^2_{dpt} = 1.25 1.35$

ESC-model: BB

Form Factors Composite Baryons

• NRQM: pointlike, gaussian distributed quarks

Baryon – quark wft :
$$\tilde{\psi}_{B}(k_{1}, k_{2}, k_{3}) = \left(\frac{3R_{B}^{2}}{\pi}\right)^{3/2} \exp\left[-\frac{R_{B}^{2}}{6}\sum_{i < j}\left(\underline{k}_{i} - \underline{k}_{j}\right)^{2}\right]$$

Form factor
$$F(\Delta^2) : \tilde{V}(\Delta) \sim \frac{F(\Delta^2)}{\Delta^2 + m^2}, \quad \Delta = \underline{p}_1 - \underline{p}_2$$

 $F(\Delta^2) \Rightarrow \exp\left[-\frac{5}{42}R_B^2\Delta^2\right] \equiv \exp\left[-\frac{\Delta^2}{\Lambda^2}\right]$
 $\Lambda = \left(\frac{5}{42}R_B^2\right)^{-1/2} \approx 2.9R_B^{-1} \approx 700 - 1100MeV$

Th.A. Rijken

University of Nijmegen

NP@J-PARC07: YN and YY Interactions

– p.20/58

Pair-vertex Mechanism

Pair-vertex mechanism

(Heavy) Meson- and Resonance saturation:

● Pair-graphs ⇔ Two-Meson cuts

ESC-model: BB

Computational Methods

• coupled channel systems:

$$\begin{array}{lll} NN: & pp \to pp, \text{ and } np \to np \\ YN: \text{ a. } & \Lambda p \to \Lambda p, \Sigma^0 p, \Sigma^+ n \\ & \text{ b. } & \Sigma^- p \to \Sigma^- p, \Sigma^0 n, \Lambda n \\ & \text{ c. } & \Sigma^+ p \to \Sigma^+ p \\ YY: & \Lambda \Lambda \to \Lambda \Lambda, \Xi N, \Sigma \Sigma \end{array}$$

• potential forms:

$$V(r) = \left\{ V_C + V_\sigma \ \underline{\sigma}_1 \cdot \underline{\sigma}_2 + V_T \ S_{12} + V_{SO} \ \underline{L} \cdot \underline{S} + V_{ASO} \ \frac{1}{2} (\underline{\sigma}_1 - \underline{\sigma}_2) \cdot \underline{L} + V_Q \ Q_{12} \right\} P$$

• many-channel Schrödinger equation: $H\Psi = E\Psi$

$$H = -\frac{1}{2m_{red}}\underline{\nabla}^2 + V(r) - \left(\underline{\nabla}^2 \frac{\phi}{2m_{red}} + \frac{\phi}{2m_{red}}\underline{\nabla}^2\right) + M$$

Th.A. Rijken University of Nijmegen $\phi(r)$: from (non-local) a^2 - terms

NP@J-PARC07: YN and YY Interactions

– p.22/58

PWA-93

Th.A. Rijken University of Nijmegen

NP@J-PARC07: YN and YY Interactions

– p.23/58

PWA-93

Th.A. Rijken University of Nijmegen

NP@J-PARC07: YN and YY Interactions

– p.24/58

Phases-NN

- p.25/58

Phases-NN

- p.26/58

Phases-NN

- p.27/58

Phases-NN

ESC04-NN

NN ESC04-model

Notice: here only NN is fitted (!)

 Coupling constants, F/(F + D)-ratio's, mixing angles.

 mesons
 I = 0 I = 1 F/(F + D)

 pseudoscalar
 f
 0.180
 0.262
 $\alpha_{PV} = 0.388$

 vector
 g
 3.124 0.779 $\alpha_V^e = 1.0$

 f
 0.071
 3.317 $\alpha_V^m = 0.387$

 scalar
 g
 2.873 0.811 $\alpha_S = 0.852$

2.203

1.4717 2.423 $\alpha_A = 0.652$

0.000 $\alpha_D = - - -$

 $\begin{array}{ll} \Lambda_{P} = 829.9 {\rm MeV}, & \Lambda_{V} = 782.4, & \Lambda_{S} = 1161.3 {\rm MeV} \\ \Lambda_{P} = 900.0 {\rm MeV}, & \Lambda_{V} = 890.2, & \Lambda_{S} = 1101.6 {\rm MeV} \\ \theta_{P} = -23.00^{o \ \star)}, & \theta_{V} = 37.50^{0 \ \star)} \\ \theta_{S} = 37.5^{o}, & \psi_{D} = 0.0^{0 \ \star)} \\ a_{PV} = 1.0 \ (!) & {\rm Scalar \ mesons: \ zero \ in \ FF} \ (!) \end{array}$

g

g

axial

diffractive

QPC: ${}^{3}P_{0}$ -model

Meson-Baryon Couplings from ${}^{3}P_{0}$ - Mechanism

 ${}^{3}P_{0}$ Interaction Lagrangian:

$$\mathcal{L}_{I} = \gamma \left(\sum_{j} \bar{q}_{j} q_{j} \right) \cdot \left(\sum_{i} \bar{q}_{i} q_{i} \right)$$

Fierz Transformation

$$\mathcal{L}_{I} = -\frac{\gamma}{4} \sum_{i,j} \left[+ \bar{q}_{i} q_{j} \cdot \bar{q}_{j} q_{i} + \bar{q}_{i} \gamma_{\mu} q_{j} \cdot \bar{q}_{j} \gamma^{\mu} q_{i} - \bar{q}_{i} \gamma_{\mu} \gamma_{5} q_{j} \cdot \bar{q}_{j} \gamma^{\mu} \gamma^{5} q_{i} \right. \\ \left. + \bar{q}_{i} \gamma_{5} q_{j} \cdot \bar{q}_{j} \gamma^{5} q_{i} - \frac{1}{2} \bar{q}_{i} \sigma_{\mu\nu} q_{j} \cdot \bar{q}_{j} \sigma^{\mu\nu} q_{i} \right] \\ \chi^{S}_{ij} \sim \bar{q}_{j} q_{i} , \ \chi^{V}_{\mu,ij} \sim \bar{q}_{j} \gamma_{\mu} q_{i} , \ \chi^{A}_{\mu,ij} \sim \bar{q}_{j} \gamma_{5} \gamma_{\mu} q_{i}$$

1.
$$g_{\epsilon} = g_{\omega}$$
, and $g_{a_0} = g_{\rho}$!?
2. What about f_{π} , g_{a_1} , etc. ?
3. $g_{q,ij}^V = g_{q,ij}^S = -g_{q,ij}^A = g_{q,ij}^P$

QPC: ${}^{3}P_{0}$ -model

• $\rho \rightarrow e^+e^-$: C.F. Identity & V.Royen-Weisskopf:

$$f_{\rho} = \frac{m_{\rho}^{3/2}}{\sqrt{2}|\psi_{\rho}(0)|} \Leftrightarrow \gamma_0 \left(\frac{2}{3\pi}\right)^{1/2} \frac{m_{\rho}^{3/2}}{|\psi_{\rho}(0)|} \to$$

$$\gamma_0 = \frac{1}{2}\sqrt{3\pi} = 1.535.$$

- OGE one-gluon correction: $\gamma = \gamma_0 \left(1 \frac{16}{3} \frac{\alpha(m_M)}{\pi}\right)^{-1/2}$
 - $m_M pprox 1 {
 m GeV}, \, n_f = 3, \, \Lambda_{QCD} = 100 {
 m MeV}: \, \gamma
 ightarrow 2.19$
 - QPC (Quark-Pair-Creation) Model:
 - Micu(1969), Carlitz & Kissinger(1970)
 - Le Yaouanc et al(1973,1975)

QPC: ${}^{3}P_{0}$ -model

ESC04 Couplings and ³*P*₀-Model Relations

Meson	$r_M[fm]$	X_M	γ_M	${}^{3}P_{0}$	ESC
$\pi(140)$	0.66	5/6	4.84	f = 0.26	0.26
$ ho(770) \ \omega(783) \ a_0(962) \ \epsilon(760) \ a_1(1270)$	0.66 0.66 0.66 0.86 0.66	$1 \\ 3 \\ 1 \\ 3 \\ 5\sqrt{2}/6$	2.19 2.19 2.19 2.19 2.19 2.19	g = 0.93 g = 2.86 g = 0.93 g = 2.85 g = 2.51	0.78 3.08 0.82 3.22 2.43

• <u>QPC: ³P₀-model relations</u>: "bare"couplings (!)

$$g_{\omega} = 3g_{\rho}, \qquad g_{\epsilon} = 3g_{a_0}, \qquad \varepsilon_0(\lambda) \sim \bar{q}q({}^3P_0)$$

$$g_{a_0} \approx g_{\rho}, \qquad g_{\epsilon} \approx g_{\omega} \qquad \varepsilon_a(\lambda) \sim \bar{q}q({}^3S_1)$$

$$f_{NNa_1} \approx \frac{m_{a_1}}{m_{\pi}} f_{NN\pi} \text{ (CS, Schwinger67)}$$

Th.A. Rijken University of Nijmegen NP@J-PARC07: YN and YY Interactions

ESC-model: extension to YN

Extension ESC to Hyperon-Nucleon

• MPE: Boson-dominance model:

• OBE.

See also: Itonaga's talk parallel session, June 2 on NM-weak decay

$$g_{Y'Y(\rho\pi)_{1}} = \hat{g}_{Y'YA_{1}}g_{A_{1}\rho\pi} \cdot \left(m_{\pi}^{2}/m_{A_{1}}^{2}\right), \text{ e.g.}$$

$$g_{\Sigma\Lambda(\rho\pi)_{1}} = \hat{g}_{\Sigma\Lambda A_{1}}g_{A_{1}\rho\pi} \left(m_{\pi}^{2}/m_{A_{1}}^{2}\right)$$

$$= (\hat{g}_{\Sigma\Lambda A_{1}}/\hat{g}_{NNA_{1}}) g_{NN(\rho\pi)_{1}}$$

$$= \frac{2}{\sqrt{3}}(1 - \alpha_{A})g_{NN(\rho\pi)_{1}}$$

Th.A. Rijken University of Nijmegen E, TME \Rightarrow SU(3)

NP@J-PARC07: YN and YY Interactions

- p.33/58

ESC-models

YN + YY ESC-model 2004: ESC04d

• Notice: simultaneous NN + YN fit, $\chi^2_{p.d.p.}(NN) = 1.32$ (!)

Coupling constants, F/(F + D)-ratio's, mixing angles

mesons		{1}	{8}	F/(F+D)
pseudoscalar	f	0.192	0.260	$\alpha_{PV} = 0.499$
vector	g	2.892	0.704	$\alpha_V^e = 1.0$
	f	-1.046	3.291	$\alpha_V^m = 0.430$
scalar	g	3.331	1.030	$\alpha_S = 0.841$
axial	g	1.834	2.431	$\alpha_A = 0.234$
diffractive	g	2.353	0.000	$\alpha_D =$

 $\begin{array}{lll} \Lambda_{P} = 834.1 \text{MeV}, & \Lambda_{V} = 830.3, & \Lambda_{S} = 1245.0 \text{MeV} \\ \Lambda_{P} = 900.0 \text{MeV}, & \Lambda_{V} = 878.0, & \Lambda_{S} = 1101.6 \text{MeV} \\ \theta_{P} = -23.00^{o \ \star)}, & \theta_{V} = 37.50^{0 \ \star)}, & \theta_{A} = -23.00^{0 \ \star)} \\ \theta_{P} = -23.00^{o \ \star)}, & \theta_{V} = 37.50^{0 \ \star)} \\ \theta_{S} = 40.32^{o}, & \psi_{D} = 0.0^{0 \ \star)} \\ a_{PV} = 1.0 \ (!) & \text{Scalar mesons: zero in FF } (!) \end{array}$

ESC-models

ESC04/06 Pair-couplings with HBS and QPC

J^{PC}	Coupling	HBS	HBS	ESC04d	ESC06d	F/(F+D)	
0 ⁺⁺ 1 1 ⁺⁺ 1 ⁺⁻	$egin{array}{llllllllllllllllllllllllllllllllllll$	-0.03 -0.28 0.04 0.16 0.42 0.31 -0.16	$egin{aligned} f_0(760,993), P\ a_0(980,1450)\ & ho(760)\ & ho(760)\ &A_1(1270)\ &A_1(1270)\ &B_1(1235) \end{aligned}$	0.00 0.10 0.03 0.14 0.83 0.04 -0.17	0.00 -0.47 0.05 0.06 0.50 0.23 -0.12	 1.00 1.00 0.40 0.47 0.47 0.43	

• Heavy-boson-saturation (HBS) comparison Pair-couplings and F/(F + D)-ratio's:

YN X-sections

YN X-sections

– p.37/58

ESC04-model

ESC04d nuclear-bar $\Sigma^+ p$ phases in degrees:

p_{Σ^+} T_{lab}	200	400	600	800	1000
	40 -				
	, 16.7	65.5	142.8	244.0	364.5
5					
${}^{1}S_{0}$	36.93	23.58	7.38	-7.24	-20.02
$^{3}S_{1}$	-8.17	-18.53	-29.91	-39.31	-45.79
ϵ_1	-2.39	-5.73	-6.28	-4.71	-2.03
${}^{3}P_{0}$	6.57	12.76	6.27	-5.25	-17.62
${}^{1}P_{1}$	12.21	73.72	76.54	73.30	69.37
ρ_1	-0.18	-1.05	-1.30	-1.48	-1.61
${}^{3}P_{1}$	-3.31	-9.03	-4.38	-10.89	-18.32
${}^{3}P_{2}$	1.54	8.85	16.30	19.72	19.91
ϵ_2	-0.46	-2.24	-3.06	-2.28	-0.59
${}^{3}D_{1}$	0.37	1.80	2.00	-0.60	-5.67
${}^{1}D_{2}$	0.38	2.39	5.936	8.61	9.56
${}^{3}D_{2}$	-0.55	-2.88	-5.56	-8.73	-12.61
^{3}D	0.07	1 02	3.02	4 58	4 72

– p.38/58

ESC06-Mesons

Meson Table ESC06

N $^{2S+1}L_J$	J^{PC}	I = 1	I = 0	I = 1/2
1 1S_0	0^{-+}	$\pi(140)$	$\eta(495),\eta'(958)$	K(495)
1 3S_1	1	ho(760)	$\omega(783),\phi(1019)$	$K^{*}(892)$
1 ${}^{3}P_{0}$	0^{++}	$a_0(980)$	$\epsilon(760), S^*(993)$	$\kappa(900)$
1 ${}^{3}P_{1}$	1^{++}	$a_1(1270)$	D(1285), $E(1420)$	$K_1(1400)$
2 1S_0	0^{-+}	$\pi(1300)$	$\eta(1295)$	K(1460)
2 3S_1	1	$ \rho(1450) $	$\omega(1420),\phi(1680)$	$K^{*}(1410)$
2 ${}^{3}P_{0}$	0^{++}	$a_0(1450)$	$\epsilon(1370), S^*(1580)$	$\kappa(1430)$
1 ${}^{1}P_{1}$	1^{+-}	$b_1(1235)$	$h_1(1170), h_1'(1380)$	$K_{1B}(1400)$
2 ${}^{3}P_{2}$	2^{++}	$a_2(1320)$	$f_2(1274), f_2, (1525)$	$K_2^*(1430)$

NN+YN ESC06-model

Coupling constants, F/(F + D)-ratio's, mixing angles.

meso	ns	I = 0	I = 1	F/(F+D)
pseudos	scalar	$f_{\eta_1'} = 0.188$	$f_{\pi_1} = 0.268$	$\alpha_{PV} = 0.434$
		$f_{\eta_2'} = -0.035$	$f_{\pi_2} = 0.280$	
vecto	or	$g_{\omega_1} = 1.932$	$g_{\rho_1} = 0.822$	$\alpha_V^e = 1.0$
		$f_{\omega_1} = 1.209$	$f_{\rho_1} = 3.909$	$\alpha_V^m = 0.285$
		$g_{\omega_2} = 3.124$	$g_{\rho_2} = -0.114$	
		$f_{\omega_2} = -1.290$	$f_{\rho_2} = 0.183$	
scala	ar	$g_{\epsilon_1} = 2.268$	$g_{\delta_1} = 0.316$	$\alpha_S = 1.0$
		$g_{\epsilon_2} = 2.531$	$g_{\delta_2} = 0.597$	
axia	al	$g_{f_1'} = 1.744$	$g_{a_1} = 2.156$	$\alpha_A = 0.129$
diffrac	tive	$g_P = 2.801$	0.000	$\alpha_D =$
$\Lambda_P = 789.3$ MeV,	Λ_V	= 1121.7 MeV,	$\Lambda_S = 1061.5 \text{ M}$	eV
$\Lambda_P=900.0$ MeV,	Λ_V	= 918.8 MeV,	$\Lambda_S = 1085.1 \text{ Me}$	V
$\theta_P = -23.00^{o \ \star)},$	$ heta_V$	$= 37.50^{0} *)$		
$\theta_{S,1}$ ' = 24.3°,		$\theta_{S,2} = 37.5$	5°	
aPV Th.A. (Hen	Univer	sity Saglaegaesons	NZO 9- HAREO (!)YN	I and YY Interactions

ESC06-model

ESC06d nuclear-bar $\Sigma^+ p$ phases in degrees:

p_{Σ^+}	200	400	600	800	1000
$T_{\rm lab}$	16.7	65.5	142.8	244.0	364.5
5					
${}^{1}S_{0}$	31.81	21.52	7.12	-6.28	-18.10
${}^{3}S_{1}$	-11.98	-24.97	-38.12	-49.85	-59.45
ϵ_1	-2.20	-5.82	-7.38	-7.15	-5.88
${}^{3}P_{0}$	6.06	12.14	6.55	-4.09	-15.83
${}^{1}P_{1}$	10.56	70.34	86.31	81.02	71.94
${}^{3}P_{1}$	-3.33	-9.83	-15.71	-20.78	-24.79
${}^{3}P_{2}$	1.19	7.06	13.78	17.37	17.58
ϵ_2	-0.43	-2.15	-3.24	-2.90	-1.60
${}^{3}D_{1}$	0.35	1.63	1.51	-1.38	-6.62
${}^{1}D_{2}$	0.35	2.16	5.24	8.54	10.53
${}^{3}D_{2}$	-0.52	-2.84	-5.80	-9.38	-13.59
${}^{3}D_{3}$	0.06	0.82	2.51	4.28	5.46

Th.A. Rijken University of Nijmegen NP@J-PARC07: YN and YY Interactions

Phases-SP,ESC06d

NP@J-PARC07: YN and YY Interactions

- p.42/58

University of Nijmegen

Th.A. Rijken

NP@J-PARC07: YN and YY Interactions University of Nijmegen

G-matrix ESC-models

Partial wave contributions to $U_{\Lambda}(\rho_0)$

	${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	sum
ESC04a	-13.7	-20.5	0.6	0.2	0.5	-4.5	-1.0	-38.5
ESC04d	-13.6	-26.6	3.2	-0.2	0.9	-6.4	-1.4	-44.1
ESC06d	-13.3	-30.7	3.5	-0.2	1.7	-4.3	-1.2	-44.5
ESC06d*	-11.8	-26.9	3.8	0.0	2.1	-3.4	-1.1	-37.2
NSC97e	-12.7	-25.5	2.1	0.5	3.2	-1.2	-1.1	-34.7
NSC97f	-14.3	-22.4	2.4	0.5	4.0	-0.7	-1.2	-31.7

• R & Y, PR C73, 044008 (2006), and private communication Y. Yamamoto

(See Yamamoto's talk INPC07,next week)

G-matrix ESC-models

Partial wave contributions to $U_{\Sigma}(\rho_0)$

model		${}^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	$^{-3}P_{2}$	D	U_{Σ}	Γ_{Σ}
ESC04a	T = 1/2	11.6	-26.9	2.4	2.7	-6.4	-2.0	-0.8		
	T = 3/2	-11.3	2.6	-6.8	-2.3	5.9	-5.1	-0.2	-36.5	
ESC04d	T = 1/2	6.5	-21.0	2.6	2.4	-6.7	-1.7	-0.9		
	T = 3/2	-10.1	14.0	-8.5	-2.6	5.9	-5.7	-0.2	-26.0	
ESC06d	T = 1/2	7.2	-21.5	1.9	2.3	-6.1	-1.0	-0.8		
	T = 3/2	-10.8	39.1	-10.6	-2.5	6.0	-4.5	-0.1	-1.2	
ESC06d*	T = 1/2	8.1	-20.5	2.1	2.3	-6.0	-1.0	-0.8		
	T = 3/2	-10.1	43.8	-10.6	-2.2	6.3	-3.6	-0.0	+8.2	
NSC97f	T = 1/2	14.9	-9.6	1.9	2.3	-4.0	0.4	-0.4		
	T = 3/2	-12.2	-4.2	-3.8	-1.8	5.5	-2.7	-0.2	-13.9	16.0

• R & Y, PR C73, 044008 (2006), and private communication Y. Yamamoto

(See Yamamoto's INPC07 talk, next week)

VLS and VLSA Spin-orbit OBE-graphs, I

Figuur 5: K,K*-exchange time-ordered graphs.

Th.A. Rijken University of Nijmegen NP@J-PARC07: YN and YY Interactions – p.46/58

VLS and VLSA Spin-orbit OBE-graphs, II

BDI70 ALS-potentials for strange-meson-exchanges

$$(a) \oplus (b) : \widetilde{V}_{K}(\mathbf{q}, \mathbf{k}) = -\frac{f_{P}^{2}}{m_{\pi}^{2}} \left[\frac{1}{2\omega} \left\{ \frac{1}{\omega - a} + \frac{1}{\omega + a} \right\} \boldsymbol{\sigma}_{1} \cdot \mathbf{k} \boldsymbol{\sigma}_{2} \cdot \mathbf{k} \right. \\ \left. + \frac{1}{M_{\Lambda} + M_{N}} \left\{ \frac{1}{\omega - a} - \frac{1}{\omega + a} \right\} \left(\boldsymbol{\sigma}_{1} \cdot \mathbf{k} \boldsymbol{\sigma}_{2} \cdot \mathbf{q} - \boldsymbol{\sigma}_{1} \cdot \mathbf{q} \boldsymbol{\sigma}_{2} \cdot \mathbf{k} \right) \right] \mathcal{P}_{f} \\ \Rightarrow \left. - \frac{f_{P}^{2}}{m_{\pi}^{2}} \left[-2\frac{M_{\Lambda} - M_{N}}{M_{\Lambda} + M_{N}} \left(\boldsymbol{\sigma}_{1} \cdot \mathbf{k} \boldsymbol{\sigma}_{2} \cdot \mathbf{q} - \boldsymbol{\sigma}_{1} \cdot \mathbf{q} \boldsymbol{\sigma}_{2} \cdot \mathbf{k} \right) \right] \mathcal{P}_{f} \cdot \frac{1}{\omega^{2} - a^{2}} \right]$$

Notice: this result corresponds with the answer in the PS-PS theory!

$$P_8 = 2\left(\boldsymbol{\sigma}_1 \cdot \mathbf{q}\boldsymbol{\sigma}_2 \cdot \mathbf{k} - \boldsymbol{\sigma}_1 \cdot \mathbf{k}\boldsymbol{\sigma}_2 \cdot \mathbf{q}\right) , P_6 = (i/2)\left(\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2\right) \cdot \mathbf{n}$$
$$= -\left(1 + \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2\right) P_6$$

This leads to the following expression $(a = M_{\Lambda} - M_N)$

$$\widetilde{V}_{K}(\mathbf{q},\mathbf{k}) \Rightarrow -\frac{f_{P}^{2}}{m_{\pi}^{2}} \left[2 \frac{M_{\Lambda} - M_{N}}{M_{\Lambda} + M_{N}} \cdot (i/2) \left(\boldsymbol{\sigma}_{1} - \boldsymbol{\sigma}_{2}\right) \cdot \mathbf{n} \right] \mathcal{P}_{x} \cdot \frac{1}{\omega^{2} - a^{2}}$$

Th.A. Rijken University of Nijmegen NP@J-P

NP@J-PARC07: YN and YY Interactions

VLS and VLSA Spin-orbit Pair-graphs, I

Strangeness Exchange (a,a')-graphs

Figuur 6: $\pi - K$ -exchange one-pair exchange graphs.

Th.A. Rijken University of Nijmegen NP@J-PARC07: YN and YY Interactions – p.48/58

VLS and VLSA Spin-orbit Pair-graphs, II

Strangeness Exchange (b,b')-graphs

Figuur 7: $\pi - K$ -exchange one-pair exchange graphs.

Th.A. Rijken University of Nijmegen NP@J-PARC07: YN and YY Interactions – p.49/58

VLS and VLSA Spin-orbit ESC-models, II

Strengths of Λ spin-orbit potential

$$U_{\Lambda}^{ls}(r) = K_{\Lambda} \left(\frac{1}{r}\frac{d\rho}{dr}\right) \mathbf{l} \cdot \mathbf{s} , \quad K_{\Lambda} = K_{S,\Lambda} + K_{A,\Lambda} \text{ where}$$
$$K_{S/A,\Lambda} = -\frac{\pi}{q} \int_{0}^{\infty} r^{3} j_{1}(qr) V_{SLS,ALS}(r) dr .$$

	K_S	K_A	$K^{(0)}_{\Lambda}$	$K_{\Lambda}(BDI)$	$K_{\Lambda}(Pair)$	K_{Λ}	ΔE_{LS}
ESC04a	18.4	-7.8	10.5	(-2.6)	(-3.7)	(4.2)	
ESC04b	16.0	-8.7	7.3	(-2.4)	(-3.3)	(1.6)	
ESC04c	27.0	-6.9	20.0	(-5.1)	(-5.4)	(9.5)	
ESC04d	22.3	-6.9	15.4	(-5.0)	(-6.9)	(3.3)	
ESC06d	24.3	-5.5	18.9	(-5.2)	(-6.6)	(7.1)	
NILS06d	21.5	-6.1	15.4	(–5.1)	(-6.6)	(3.7)	
NHC-D	30.7	-5.9	24.8	(-3.4)		(21.4)	<u>0.15*</u>
NHC-F	29.7	-6.7	<u>23.0</u>	(-3.8)	—	(19.2)	<u>0.20*</u>
Experiment	H. Tamura, Nucl.Phys. A754 (2005)					0.043	

*) E. Hiyama et al, P.R.L. 85 (2000) 270

(See Hiyama's INPC07 talk)

VLS and VLSA Spin-orbit ESC-models, III

SLS+ALS: NILS06d and HKMYY(NSC97a)

– p.51/58

University of Nijmegen

Th.A. Rijken

NP@J-PARC07: YN and YY Interactions

ESC-models: S = -2 YY,YN

YY: The $\Lambda\Lambda\text{-systems}$ etc. ESC2004/06

- p.52/58

ESC-models: YY

YY: The $\Lambda\Lambda\text{-systems}$ ESC2004/06

• Danyz et al (1963), Dalitz et al (1989):

 $\Xi^- + ^{12}C \rightarrow^{10}_{\Lambda\Lambda} Be + p + 2n$, $\Xi^- + ^{14}N \rightarrow^{10}_{\Lambda\Lambda} Be + t + p + n$

 $^{10}_{\Lambda\Lambda}Be \rightarrow^9_{\Lambda}Be + p + \pi^-$, $\Delta B_{\Lambda\Lambda} = 4.7 \pm 0.4$ MeV !??

- Dover, Maui 1993: $|V_{\Lambda\Lambda}({}^{1}S_{0})| \approx |V_{NN}({}^{1}S_{0})|$ \rightarrow strong attraction in $\Lambda\Lambda$ -systems, H (?)
- KEK-373: NAGARA-event (2001), Nakazawa et al

$$\Xi^{-} + {}^{12}C \rightarrow^{6}_{\Lambda\Lambda} He + {}^{4}He + t ,$$

$${}^{6}_{\Lambda\Lambda}He \rightarrow^{5}_{\Lambda} He + p + \pi^{-} , \ \Delta B_{\Lambda\Lambda} = 1.01 \pm 0.28 \text{ MeV}$$

 $^{10}_{\Lambda\Lambda}Be \rightarrow^9_{\Lambda}Be^* + p + \pi^-$, $\Delta B_{\Lambda\Lambda} \approx 1.0$ MeV !!

Soft-core models: NSC89, NSC97: |V_{ΛΛ}(ϵ)| < |V_{ΛN}(ϵ)| → weak attraction/repulsion in ΛN, ΞN-sytems.
ESC04d-model: ΔB_{ΛΛ} ≈ 1.0 MeV !! Ξ-well-depth =-18.7 MeV ≈ experiment - 16 MeV (!?)

ESC-models: YY

$\Delta B_{\Lambda\Lambda}$ Nijmegen ESC-models:

model	$\Delta B_{\Lambda\Lambda}$ MeV	$P_{\Xi N}()$
ESC04a	1.36	0.44
ESC04b	1.37	0.45
ESC04c	0.97	1.15
ESC04d	0.98	1.18
NSC97f	0.34	0.19
$NHC\text{-}D^a$	1.05	0.14
exp^b	1.01 ± 0.20	

• a: NHC-D $r_{HC} = 0.53$ fm.

• b: H. Takahashi et al, PRL 87, 212502 (2001)

- p.55/58

NP@J-PARC07: YN and YY Interactions

University of Nijmegen

Th.A. Rijken

Phases-XN

G-matrix ESC-models

Partial wave contributions to $U_{\Xi}(\rho_0)$ at normal density.

model		${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	U_{Ξ}
ESC04a	T = 0	8.1	-10.0	1.0	-0.3	-0.4	-0.7	
	T = 1	-4.5	21.8	-0.7	0.7	-0.1	0.3	+15.1
ESC04b	T = 0	5.9	-2.4	0.7	0.7	1.0	-0.4	
	T = 1	0.5	27.9	0.6	0.9	-0.3	1.2	+36.3
ESC04c	T = 0	5.9	-15.7	1.2	-0.1	-1.8	-1.2	
	T = 1	6.8	1.9	-0.8	0.1	-0.3	-1.7	-5.5
ESC04d	T = 0	6.4	-19.6	1.1	1.2	-1.3	-2.0	
	T = 1	6.4	-5.0	-1.0	-0.6	-1.4	-2.8	-18.7
ESC04d*	T = 0	6.3	-18.4	1.2	1.5	-1.3	-1.9	
	T = 1	7.2	-1.7	-0.8	-0.5	-1.2	-2.5	-12.1
NHC-D	T = 0	-4.5	2.6	-1.8	-0.2	-0.6	-1.7	
	T = 1	0.2	5.3	-2.6	0.0	-2.9	-5.6	-11.9

• ESC04d^{*}: Medium Effect $\alpha_V = 0.18$. • private communication Y. Yamamoto

Epilogue

Conclusions and Applications/Prospects ESC-model

- 1. High-quality Descriptions NN, YN, YY scattering
- 2. Simultaneous Fit/Description $NN \oplus YN$, meson-exchange dynamics \Leftrightarrow theory (QPC !)
- 3. Long-range forces ($\pi\pi$) complete \oplus

 $SU_f(3)$ -consistent ($K\bar{K}, \pi K$, etc.)

4. YN,YY: couplings $SU_f(3)$ -symmetry,

 $^{3}S_{1}(\Sigma N, I = 3/2)$ is weakly (ESC04d)/ strongly (ESC06d) repulsive,

 ΛN : p-waves attractive on average

5. Scalar-meson nonet structure \Leftrightarrow Nagara $\Delta B_{\Lambda\Lambda}$ values.

Applications/extensions ESC Models:

- 'Effective Interactions' in Hyper-nuclei
- Calculation Three-Body-Forces
- Nuclear-, Neutron-star-, and 'Strange-matter'

Prospects:

- Tests in nuclear and hypernuclear spectrocopy
- Future scattering experiments (JPARC, FAIR) + ESC-model ⇒ Determination Meson-couplings!!

Summary and Proloque

General Summary and Prospects

Th.A. Rijken University of Nijmegen

NP@J-PARC07: YN and YY Interactions

- p.58/58