Possible Spin Physics at J-PARC

Xiangdong Ji Maryland Center for Fundamental Physics University of Maryland

International Workshop on Nuclear Physics at J-Parc June 1-2, 2007

Outline

- Introduction to hadron spin physics
- J-Parc spin possibilities
 - Drell-Yan process
 - Double longitudinal spin asymmetry
 - Double transverse spin asymmetry
 - Single spin asymmetry
- Conclusion

Introduction to hadron spin physics

- Spin is one of the most fundamental properties of any hadronic state (proton, neutron,...)
 - Quantum number generated by Lorentz symmetry
- Unlike elementary particles (quarks, leptons and gauge bosons), a hadron spin is the total angular momentum of a composite quark-gluon manyparticle system:
 - It is a result of the vector sum of quark spin, gluon spin, quark and gluon orbital angular momentum.
 - Relative sizes of the different contributions reflect underlying QCD dynamics.

Key questons

• How do individual angular momentum components contribute to the spin?

- Where does the proton/neutron spin come from?
- How important is the role of the gluons?
- Orbital motion of the quarks?
- What are the emerging hadron-spin-related physics phenomena?
 - Novel parton distributions
 - Transversity distribution
 - Sivers function

Single transverse spin asymmetry

The spin of the proton: status

Quark helicity contribution

Measured very well, except at large and small Feynman x, as well as the quark sea.

Gluon helicity contribution

Initial measurements are encouraging, but more accurate measurements are needed.

Orbital contribution

Can be measured through generalized parton distributions. Initial sensitivity study through vector production on trasnversely polarized target shows great promise.

Experimental measurements (I)

Q-evolution in inclusive spin structure function $g_1(x)$

Two leading-hadron production in semi-inclusive DIS

Experimental measurements (II)

production in polarized PP collision at RHIC

Two jet production in polarized PP collision at RHIC

Fit to data

Generally depend on the function forms assumed.

Hirai, Kumano, Saito, hep-ph/0603213 (ACC)

 $\Delta g = 0.31 \pm 0.32$ type-= 0.47 ± 1.0 type-2 = --0.56 ± 2.16 type-2

Type-3 fit assumes gluon polarization is negative at small

X.

Bag model calculation

Chen & Ji, hep-ph/0612174

Orbital contribution

Lattice QCD!

HERMES

Preliminary

DVCS (proton)

→ Tremendous progress to constrain quark angular momenta

Emerging Parton distribution from the nucleon spin: Transversity

- It's one of the three twist-2 distributions describing the parton physics at high-energy
- It is the density of transversely polarized quarks in a transversely polarized nucleon.
- It is chirally-odd: correlations of left and right-handed quarks in the nucleon
- It is closely related to the axial charge: the quark helicity contribution to nucleon helicity.

. . .

Ideas for experimental measurement

In pp(p-bar) scattering

- Drell-Yan: transversely polarized proton, cleanest
- ... •
- In e-p scattering
 - Collins effects, two hadron production
 - Lambda production
 - Twist-3 fragmentation
 -

It will take a lot of more effort to measure the transversity distribution than other twist-2 one!

Emerging phenomenon from the nucleon spin: Single Spin Asymmetry

Consider scattering of a transversely-polarized spin-1/2 hadron (S, p) with another hadron, observing a particle of momentum k

The cross section can have a term depending on the azimuthal angle of **k** $\frac{d\sigma \sim \vec{S} \cdot (\vec{p} \times \vec{k})}{d\sigma \sim \vec{S} \cdot (\vec{p} \times \vec{k})}$

which produce an asymmetry A_N when S flips: SSA

Why Does SSA Exist?

- SSA is proportional to
 Im (F_N * F_F)
 where F_N : the normal helicity amplitude and F_F : a spin flip amplitude
- Thus its existence requires
 - Helicity flip: one must have a reaction mechanism for the hadron to change its helicity (in a cut diagram).
 - Final State Interactions (FSI or ISI): to general a phase difference between two amplitudes. The phase difference is needed because the structure
 - $\mathbf{S} \cdot (\mathbf{p} \times \mathbf{k})$ formally violate time-reversal invariance.

pQCD mechanisms for SSA

- QCD factorization introduces non-perturbative hadron structure functions which help to enhance the SSA relative to that in parton model
 - Twist-3 matrix effects (Efremov-Teryaev-Qiu-Sterman) hadron spin-flip through gluons and hence the quark mass is replaced by Λ_{QCD}.
 - Transverse-momentum-dependent (TMD) parton distribution (Sivers function)

non-perturbative generation of ISI or FSI phases

a twist-2 effect: no 1/Q suppression

A unified picture for SSA

- In DIS and Drell-Yan processes, SSA depends on Q and transverse-momentum $P_{\gamma\gamma}$
 - At large P_γ, SSA is dominated by twist-3 correlation effects (Afremov& Teryaev, Qiu & Sterman)
 - At moderate P_{γ} , SSA is dominated by the k_{γ} -dependent parton distribution/fragmentation functions
- Ji, Qiu, Vogelsang, & Yuan, Phys.Rev.Lett.97:082002,2006

The two mechanisms at intermediate $P_{\boldsymbol{\gamma}}$ generate the same physics!

J-PARC hadron spin physics (primary beam)

- Assume
 - 50 GeV polarized proton beam (longitudinal and transverse)
 - Unpolarized and polarized proton, deuteron and He-3 target (various polarization combinations)
- Processes
 - Drell-Yan: cleanest process to learn about parton physics
 - Hadron productions: pQCD?

General remarks about Drell-Yan

The Drell-Yan Process

- pQCD condition requires the invariant mass of the lepton pair, M, to be large ⑦ ⊗_{QCD}
- The fixed target center-of-mass energy at J-PARC is Sqrt(s) = 10 GeV.
- Therefore, $\blacklozenge = M/s = x_1x_2$ is very large, for which there is a significant threshold effort.
 - Large perturbative corrections must be resummed

Possible large higher twist effect.

Drell-Yan Cross Section at J-Parc

No. of events is large when $q_t < 2 \text{ GeV}$ and invariant mass of the lepton pair < 2-3 GeV

Longitudinal double spin asymmetry

 Longitudinally polarized proton scattering on longitudinally polarized proton, deuteron, He-3 targets. The spin asymmetry is sensitive to quark and antiquark polarizations in leading order.

$$A_{LL}^{DY}(x_1, x_2) = \frac{\sum_q e_q^2 \left[\Delta q(x_1) \Delta \bar{q}(x_2) + \Delta q(x_1) \Delta \bar{q}(x_2) \right]}{\sum_q e_q^2 \left[q(x_1) \bar{q}(x_2) + q(x_1) \bar{q}(x_2) \right]}$$

$$x_F = x_1 - x_2$$

$$x_1 = \frac{M}{\sqrt{s}}e^y$$

$$x_2 = \frac{M}{\sqrt{s}}e^{-y}$$

Large x parton distribution

- Large \blacklozenge requires large x_1 (quark) and x_2 (antiquark).
- Ideal to measure polarized up quark distribution at large x!
- Large x parton distribution is usually very much suppressed, difficulty to measure accurately.
- Little information is available.

Quark orbital angular momentum contribution at large-x

Power counting rule Brodsky-Burkardt-Schmidt 95 Leader-Sidorov-Stamenov 98 $q^{-}/q^{+} \sim (1-x)^{2}$

Quark-orbital-angular Momentum contribution Avakian-Brodsky-Deur-Yuan,07 $q^{-}/q^{+} \sim (1-x)^{2} \log^{2}(1-x)$

A_{LL} for pp and pn collisions at JPARC

LSS: Leader-Sidorov-Stamenov 98 ABDY: Avakian-Brodsky-Deur-Yuan,07

A_{LL} for pp and pn collisions at JPARC

LSS: Leader-Sidorov-Stamenov 98 ABDY: Avakian-Brodsky-Deur-Yuan,07

Transversity

- Double transverse polarization asymmetry in Drell-Yan process has never been measured before.
 - Transversely polarized beam and target
- Don't know about the size of the sea quark transversity
 - There is no reason that it is strongly suppressed.
- Large Drell-Yan asymmetry at GSI-PANDA
 - H. Shimuzu, G. Sterman, W. Vogelsang, H. Yokoya Hep-ph/0503270

Dedicated study (simulations) is needed.

Effects of resummation

Drell-Yan Study for Sqrt(s) =14.5 GeV.

H. Shimuzu, G. Sterman,W. Vogelsang, H. YokoyaHep-ph/0503270

Single spin asymmetry

- In Drell-Yan collision, the lepton pairs are produced with a transverse momentum imbalance q_T, due to gluon radiation or transverse momentum of the initial quarks.
- When one of the proton is transversely polarized, the lepton pairs produced with different q_T direction have different rate: single spin asymmetry.
 - The asymmetry is related to the asymmetric distributions of the quarks in a transversely polarized nucleon (Sivers function)

SSA for Drell-Yan at JPAC (integrated over P_T)

Conclusion

- At J-Parc, Drell-Yan process with polarized proton beam and targets allows a unique opportunity to learn about the partonic structure of the nuclons.
 - With A_{LL}, one can measure the polarized parton distribution at large x, complementing Jlab 12 program.
 - With A_{TT} , one can measure the transverisity distribution.
 - With A_T one can learn about the mechanisms for the single spin asymmetry, aysmmetric parton distributions, and perhaps twist-3 correlations!

GO SPIN, J-PARC!