A Gaussian-sum Filter for vertex reconstruction

> R. Frühwirth - HEPHY Vienna T. Speer - University of Zurich

IX International Workshop on Advanced Computing and Analysis Techniques in Physics Research Tsukuba 4th December 2003

Vertex reconstruction

- Standard tool for vertex reconstruction is the Kalman Filter (also implemented in the reconstruction software of the CMS experiment at LHC, CERN)
- The Kalman Filter is mathematically equivalent to a global least square minimization (LSM)
- If the model is linear and random noise is Gaussian:
 - > LS estimators are unbiased and have minimum variance
 - > Residuals and pulls of estimated quantities are also Gaussian
- For non-linear models or non-Gaussian noise, it is still the optimal linear estimator
- Non-Gaussian measurement errors degrade results!

Gaussian-sum Filter (GSF)

Measurement error distributions modelled by mixture of Gaussians:

- Main component of the mixture would describe the core of the distribution
- Tails would be described by one or several additional Gaussians.
- First proposed by R. Frühwirth for track reconstruction (Computer Physics Communications 100 (1997) 1.)
- Successfully implemented in the CMS reconstruction software for electron track reconstruction:
 - Bethe-Heitler energy loss distribution modeled by a mixture of Gaussians
- GSF for vertex reconstruction now also implemented in the CMS reconstruction software.

The Gaussian-sum Filter for vertex reconstruction

- Track parameter error distributions modeled by a mixture of Gaussians
- Vertex State vector x, is also distributed according to a mixture of Gaussians
- Iterative procedure: estimate of the vertex is updated with one track at the time
- Add new track to vertex, each component of the Vertex State is updated with each component of the track (Combinatorial combination of all track components)
- The new Vertex State x_k is therefore distributed according to a mixture of N_k (= $N_{\text{track}-k} * N_{\text{vertex}-k-1}$) Gaussians
- The filter is a weighted sum of several Kalman Filters
 - > GSF is implemented as a number of Kalman filters run in parallel
 - > The weights of the components are calculated separately
- Non-linear estimator: weights depend on the measurements

Simulation

Simplified simulation in a fully controlled environment:

- Tracks generated at a common vertex
- No track reconstruction
- Track parameters are smeared according to known distributions:
- E.g. 2 component Gaussian mixture:
 - Narrow component: 90 % Relative weight
 - (Standard deviation of Impact parameter = $100\mu m$)
 - Wide component: 10 % Relative weight
 - Std dev. 10x larger (Impact parameter = $1000\mu m$)
 - ⇒ Ratios of Standard deviation = 10
- For the Kalman Filter:
 - \cdot tracks smeared according to two-component mixture
 - \cdot single component used in the fit:
 - > track parameter variance of dominating component
 - > estimated position independent of scaling of variance (but not position uncertainty or χ^2)

Four track-vertex fit with the Kalman Filter:

- Non-Gaussian tails in the distributions of residuals and pulls
- Large number of fits with $P(\chi^2) < 0.01$

Gaussian-sum Filter fit

Four track-vertex fit with the GSF (using the full Gaussian mixture)

Residuals: smaller tails then with the Kalman Filter, smaller resolution The remaining tails are due to events with several outliers.

No outliers in the pull distributions: error on the outliers correctly taken into account

 $P(\chi^2)$: dip at 0. - in early stages of the fit, bias towards components with a low χ^2

The filters needs several iterations (tracks) to stabilise and select the correct vertex component

(combination of track components)

Measures of improvement of vertex fits

- Two-component Gaussian mixtures with different ratios of standard deviations and relative weights (4-track vertices)
- Measures:
 - 50% and 90% coverage: half-widths of the symmetric intervals covering 50% and 90% of the residual distribution (x-coordinate)
 - Relative efficiency: ratio of the mean (3D) distances of the estimated vertex from its simulated position, for fits with the Kalman Filter and the GSF
 - ⇒ For Kalman Filter: estimated position independent of scaling of track parameter variance
 - > Fraction of Kalman Filter fits with $P(\chi^2) < 0.01$
 - ⇒ For Kalman Filter: estimated uncertainty dependent of scaling of track parameter variance

$P(\chi^2)$

Coverage

Thomas Speer

ACAT03 - 4th December 2003 - p. 9

Relative efficiency

Relative efficiency: ratio of the mean distances (in three dimensions) of the estimated vertex from its simulated position, for fits with the KVF and the GSF

- Highest relative efficiency: largest distance between the two-component Gaussian mixture and the single Gaussian
- Larger weight of the tails: tails start to dominate >> lower relative efficiency

Kullback-Leibler Distance between a two-component Gaussian mixture and single-Gaussian distribution with identical moments:

Thomas Speer

ACAT03 - 4th December 2003 - p. 11

 $P(\chi^2)$

Fraction of Kalman Filter fits with $P(\chi^2) < 0.01$

> Estimated uncertainty dependent of scaling of track parameter variance

The number of components increases exponentially:

- > *n* measurements, with *m* components: n^m components at the end!
 - → Combinatorial explosion!
- ➤ Keep only M components at each step:
 - → Keep components with the largest weight, discard the rest
 - → Cluster (collapse) components with the smallest 'distance'
 - 2 Distance measurements were used:
 - Kullback-Leibler Distance

$$D_{KL}(p_1, p_2) = tr \left[\left(V_1 - V_2 \right) \left(V_1^{-1} - V_2^{-1} \right) \right] + \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(V_1^{-1} + V_2^{-1} \right) \left(\mu_1 - \mu_2 \right)^T \left(\mu_1 - \mu$$

- Mahalanobis Distance

$$D_{M}(p_{1}, p_{2}) = (\mu_{1} - \mu_{2})^{T} (V_{1} + V_{2})^{-1} (\mu_{1} - \mu_{2})$$

Standard deviation

Mean

The GSF vertex filter shows little sensitivity to the number of components kept

Thomas Speer

ACAT03 - 4th December 2003 - p. 16

Nbr Comp.	Average χ^2	Res. [μm]		Pull				Aver	age	χ²	Res	s. [μι	m]	F	Pull
No limitation	0.99	84.8	3		0.9											
	Kullback-Lei	bler Dis	tance					Ν	Vlaha	lano	bis	Dist	ance	9		
2	0.91	90.5	5		0.88				0	.93		ç	92.2		0	.84
3	0.94	90.5	5		0.88				0	.95		8	39.7		0	.85
4	0.95	85.4	4		0.89				0	.95		8	34.9		0	.89
6	0.96	84.9	9		0.89				0	.97		8	34.6		0	.89
8	0.96	83.9	9		0.9				0	.97		8	33.9		().9
3 2.5 1.5 1 0.5	KL distance	• uunt (100 • 0000000000000000000000000000000000				• C Kaln GSF GSF	• Dan Filter - KL dist - M dista		E1600 (procession)	-	•	•	• Kalm • GSF • GSF	• an Filter - KL dist - M dista	• ance nce	
	4 6 8 Compone	NO nt Limit) 2	3	4	6	8 Compone	NO ent Limit	0 [2	3	4	6	8 Compone	NO ent Limit	
Relative effi	50	50% coverage					90% coverage									
Thomas Speer	-									AC	AT()3 - 4	th De	cemb	er 20	03 - p. 17

For the Kalman filter, the collapsed state of the track has been used

Nbr Comp.	Average χ^2	Res. [µm]	Pull	Average χ^2	Res. [µm]	Pull			
No limitation	0.99	178	0.85						
	Kullback-Leil	oler Distance		Mahalanobis Distance					
2	0.91	217	0.81	0.93	217	0.81			
4	0.94	197	0.83	0.95	191	0.82			
6	0.95	197	0.83	0.95	188	0.82			
8	0.96	191	0.84	0.97	184	0.82			
12	0.96	188	0.84	0.97	181	0.83			
18	0.99	179	0.85	0.99	178	0.85			

ACAT03 - 4th December 2003 - p. 21

Conclusion

- A Gaussian-sum Filter for vertex reconstruction has been implemented in the CMS reconstruction software
- Shows an improvement of the resolution and error estimate of the fitted vertex and of the χ^2 of the fit with respect of the Kalman Filter when the track parameters residuals have non-Gaussian tails.
- For electrons reconstructed with the GSF: Allows to use the full mixture, and not only the single collapsed state.
- Shows little sensitivity to the number of components kept during fit.
- A small number of components can be kept without degrading the fit too much.