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ABSTRACT

We present the application of the variational-wavelet
analysis to the quasiclassical calculations of the so-
lutions of Wigner/von Neumann/Moyal and related
equations corresponding to the nonlinear (polynomial)
dynamical problems. (Naive) deformation quantiza-
tion, the multiresolution representations and the vari-
ational approach are the key points. We construct the
solutions via the multiscale expansions in the general-
ized coherent states or high-localized nonlinear eigen-
modes in the base of the compactly supported wavelets
and the wavelet packets. We demonstrate the appear-
ance of (stable) localized patterns (waveletons) and
consider entanglement and decoherence as possible ap-
plications.
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1 Wigner-like Equations

In this paper we consider the applications of a numerical-ana-
lytical technique based on local nonlinear harmonic analysis
(wavelet analysis, generalized coherent states analysis) to the
quasiclassical calculations in nonlinear (polynomial) dynam-
ical problems in the Wigner-Moyal approach. The corre-
sponding class of Hamiltonians has the form

p?
H(p,q) = —-I-U{ﬁ,ﬁ}. (1)
2m

where U(p, ¢) is an arbitrary polynomial function on p, ¢,
and plays the key role in many areas of physics [1], [2]. The
particular cases, related to some physics models, are consid-
ered in [3]-[12]. Our goals are some attempt of classification
and the explicit numerical-analytical constructions of the ex-
isting quantum states in the class of models under consid-
eration. There is a hope on the understanding of relation
between the structure of initial Hamiltonians and the possi-
ble types of quantum states and the qualitative type of their
behaviour. Inside the full spectrum there are at least three
possibilities which are the most important from our point
of view: localized states, chaotic-like or/and entangled pat-
terns, localized (stable) patterns (definitions can be found
below). All such states are interesting in the different ar-
eas of physics (e.g., [1], [2]) discussed below. Our starting
point is the general point of view of a deformation quantiza-
tion approach at least on the naive Moyal / Weyl/Wigner level
1], [2]. The main point of such approach is based on ideas
from [1], which allow to consider the algebras of quantum
observables as the deformations of commutative algebras of
classical observables (functions). So, if we have as a model
for classical dynamics the classical counterpart of Hamilto-
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nian (1) and the Poisson manifold M (or symplectic manifold
or Lie coalgebra, etc) as the corresponding phase space, then
for quantum calculations we need first of all to find an asso-
ciative (but non-commutative) star product * on the space
of formal power series in h with coefficients in the space of
smooth functions on M such that

f*g =fg+h{f,g}+“§2ﬁﬂﬁn(f,g), (2)

where {f,g} is the Poisson brackets, B, are bidifferential
operators. Kontsevich gave the solution to this deformation
problem in terms of the formal power series via the sum
over graphs and proved that for every Poisson manifold M
there is a canonically defined gauge equivalence class of star-
products on M. Also there are the nonperturbative correc-
tions to power series representation for * [1]. In the naive
calculations we may use the simple formal rule:

ih
* = Exp(?({ﬁﬂﬁp ~ *gﬂﬁq” (3)

In this paper we consider the calculations of the Wigner func-
tions W(p,q,t) (WF) corresponding to the classical polyno-
mial Hamiltonian H (p, g, t) as the solution of the Wigner-von
Neumann equation [2]:

ih%W:H*W-—W*H (4)
and related Wigner-like equations. According to the Weyl
transform, a quantum state (wave function or density op-
erator p) corresponds to the Wigner function, which is the
analogue in some sense of classical phase-space distribution
[2]. We consider the following form of differential equations

for time-dependent WF, W = W{(p,q,t):
2  -h Z
W¢=Esm[§{ﬂfﬂr—ﬂfﬂr)]-ﬂw {U]
3



which is a result of the Weyl transform of von Neumann

equation "
. TP
h— = [H, 6
ih—> = [H,p] (6)

In our case (1) we have the following decomposition [2] (U =
U(g) in the following only for simplicity, but the case U =
U(p,q) can be considered analogously):

aOw
= =T+, (7)
where
= {iﬁfﬂ)m dz‘“U{q] H3+1 -
I O, IR 9
— ‘H’Irl':;f P, q; } { )

Let {|E), E} be the full set of discrete/continuous eigenfunc-
tions (eigenvalues)

H|E) = E|E) (10)
then we have the following representation for the Moyal func-
tion:

| - - 1 1
Werpr(q,p) = 2wh f__m dée P/ (q + iEIE"} (E'lq - EE} (11)

which is reduced to the standard WF in the case E' = E":
Wee(p,q) = W(p,q). As a result, the time independent
Moyal function generates the time evolution of the WF., The
corresponding integral representation contains the initial value
of the density operator p(0) as a factor [2]. The Moyal
function satisfies the following system of (pseudo)differential
equations

p* h® 9° x (—=1)(h/2)*d*U 8%
— 4+ U - ——— — Wgn g
[2m i} 8m dq? ¥ igt (2I)! dg* ﬂpﬂ] i
E.r + EH
= ——Wgn g (12)
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[E d dU O oo {—.]}f(ﬁfg)ﬂ‘dm-l-lu ﬂﬂ"'l
mdq dqdp =1 (20+1)! dg¥t! gpt

1
= - (E" - BYWgrp (13)

|Wenr g

really nmonlocal/pseudodifferential for arbitrary Hamiltoni-
ans. But in case of polynomial Hamiltonians (1) we have
only a finite number of terms in the corresponding series.
Also, in the stationary case after Weyl-Wigner mapping we
have the following equation on WF in c-numbers [2]:

P ARpd M B
— = —— - W (p, 14
{2m+2imﬂq Bmﬂq“i (Pa) + (14)
h 8
Ulg = 5: 5, )W (P a) = W(p, q)
idp

After expanding the potential U into the Taylor series we
have two real partial differential equations which correspond
to the mentioned before particular case of the Moyal equa-
tions (12), (13).

Our approach, presented below, in some sense is motivated
by the analysis of the following standard simple model con-
sidered in [2]. Let us consider model of interaction of non-
resonant atom with quantized electromagnetic field:

H= % + U(z), U(&) = Up(z,t)g(&)a a (15)
where potential U depends on creation/annihilation opera-
tors and some polynomial on & operator function (or approx-
imation) g(&). It is possible to solve Schroedinger equation

P H|¥ > (16)

by the simple ansatz
W(t) >= ¥ w, [da|¥a(@,t)le > B>  (17)

2



which leads to the hierarchy of analogous equations with po-
tentials created by n-particle Fock subspaces

ihﬂw':;:’ o= {% + U(t)g(z)n} ¥, (x, t) (18)

where ¥, (x,t) is the probability amplitude of finding the
atom at the time t at the position # and the field in the
n Fock state. Instead of this, we may apply the Wigner
approach starting with proper full density matrix

p=|¥(t) >< ¥(t)| = (19)
E: wn"w;u Jlrdzi JI( d:t:”'-I‘n!{m’, t]‘I’;;r{ﬂ:", t—”ﬂ:, >

“r'ﬂﬂ‘

< EH[ R |nJ S < nHI

Standard reduction gives pure atomic density matrix
pa = [_, < mlpln >= (20)
Y |wa|? [ da’ [ d2" ¥, (2, t) ¥ (2", t) |2 >< 2"

Then we have incoherent superposition

Wz, p, t) = gﬂ |wnliwn(mr p,t) (21)
of the atomic Wigner functions
wﬂ(zi P t} = (22)

1 1 1
o [ déexp(— P Wi (z — 26 OWa(@ + 26 1)

corresponding to the atom motion in the potential U,(x)

(which is not more than polynomial in x) generated by n-level

Fock state. They are solutions of proper Wigner equations:
oW, poW, == (—1){(h/2)* 8% U, (x) B3 H'W,

- " 23
ot m Oz +¢§n (2£ 4+ 1)! Hx2t+1 Opt+! (23)

In the following section we’ll generalize this construction

and we are interested in description of entanglement in the
Wigner formalism.
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The next example describes the decoherence process. Let
we have collective and environment subsystem with their own
Hilbert spaces

H=H ®H. (24)
Relevant dynamics are described by three parts including
interaction

H=Hc®Ic+Ic®He+Hiﬂt {25}

For analysis, we can choose Lindblad master equation [2]

1
p= E[Hl P] i E TH{L:LHP s PL:Ln e ZLnﬂL:) (26)
which preserves the positivity of density matrix and it is
Markovian but it is not general form of exact master equa-
tion. Other choice is Wigner transform of master equation

[2] and it is more preferable for us
W ={H,W}pp+ (27)
ﬁzﬂ{_”" §entl Zn+41
Sioman )0 D@0 Wimp)+
2v8,pW + .D&;W

In the next section we consider the variation-wavelet ap-
proach for the solution of all these Wigner-like equations (6)-
(9), (12), (14), (23), (26), (27) for the case of an arbitrary
polynomial U/(gq, p), which corresponds to a finite number of
terms in the series from (8), (12), (13), (14), (23), (27) or to
proper finite order of fi. Our approach is based on the ex-
tension of our variational-wavelet approach [3]-[12]. Wavelet
analysis is some set of mathematical methods, which gives
the possibility to work with well-localized bases in functional
spaces and gives maximum sparse forms for the general type
of operators (differential, integral, pseudodifferential) in such

-
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bases. These bases are the natural generalization of stan-
dard coherent, squeezed, thermal squeezed states [2], which
correspond to quadratical systems (pure linear dynamics)
with Gaussian Wigner functions. Because the affine group of
translations and dilations (or more general group, which acts
on the space of solutions) is inside the approach (in wavelet
case), this method resembles the action of a microscope. We
have a contribution to the final result from each scale of reso-
lution from the whole underlying infinite scale of spaces. Our
main goals are an attempt of classification and construction of
possible nontrivial states in the system under consideration.
We are interested in the following states: localized, entan-
gled patterns, localized (stable) patterns. We start from the
corresponding definitions (at this stage these definitions have
only qualitative character).

1. By localized state (localized mode) we mean the cor-
responding (particular) solution of the system under consid-
eration which is localized in maximally small region of the
phase space.

2. By chaotic/entangled pattern we mean some solution
(or asymptotics of solution) of the system under considera-
tion which has equidistribution of energy spectrum in a full
domain of definition.

3. By localized pattern (waveleton) we mean (asymptot-
ically) stable solution localized in relatively small region of
the whole phase space (or a domain of definition). In this
case all energy is distributed during some time (sufficiently
large) between few localized modes (from point 1) only.

Numerical calculations explicitly demonstrate the quantum
interference of generalized coherent states, pattern formation
from localized eigenmodes and the appearance of (stable)
localized patterns (waveletons).



2 Variational Multiscale Representation

We obtain our multiscale/multiresolution representations for
solutions of Wigner-like equations via a variational-wavelet
approach. We represent the solutions as decomposition into
modes related to the hidden underlying set of scales [13]:

W(t,q,p) = 5 8'W(t,q,p) (28)

=i
where value i. corresponds to the coarsest level of resolu-
tion ¢ or to the internal scale with the number ¢ in the full

multiresolution decomposition of underlying functional space
(L?, e.g.) corresponding to problem under consideration:

VeCVen C Veqa C .. (29)

and o= (Fl! Pas ---}r g = [{J'h qz, ---]1 Ly = {pli 1y seney Pis Eh] are
coordinates in phase space. In the following we may consider
as fixed as variable numbers of particles. The second case
corresponds to quantum statistical ensemble (via “wigneriza-
tion” procedure) and will be considered in details elsewhere
[12].

We introduce the Fock-like space structure

H=5S @H" (30)

n=0
for the set of n-particle wave functions (states):
W = {Wy, Wi(z;t), Wa(zy, 23 t),. - ., (31)
Wivl®y, - 2851 ) i)

where Wy(z1,...,2p;t) € H?, H = C, HP = L?*(R°") (or
any different proper functional space), W € H® = H' @
H'@&...6 HP @ ... with the natural Fock space like norm



(guaranteeing the positivity of the full measure):
(W, W) = We + S [ Wi@iyooonmist) Lo ()

First of all we consider W = W (t) as a function of time only,
W € L*(R), via multiresolution decomposition which natu-
rally and efficiently introduces the infinite sequence of the
underlying hidden scales [13]. We have the contribution to
the final result from each scale of resolution from the whole
infinite scale of spaces. We consider a multiresolution decom-
position of L?(R) (of course, we may consider any different
and proper for some particular case functional space) which
is a sequence of increasing closed subspaces V; € L*(R) (sub-
spaces for modes with fixed dilation value):

wVsCEVa CVHC WV C Yol . (33)

The closed subspace V;(j € Z) corresponds to the level j of
resolution, or to the scale j and satisfies the following prop-
erties: let W, be the orthonormal complement of V; with
respect to Vi : Vi = V;@ W;. Then we have the following
decomposition:
{wit)}= @& W, or {W(@{)}=V DWW, (34
—oo<j<oo j=0
in case when V; is the coarsest scale of resolution. The sub-
group of translations generates a basis for the fixed scale
number: spang.z{2//?¥(2/t — k)} = Wj. The whole basis is
generated by action of the full affine group:
spangcz jcz{2*¥(2’t — k)} = (35)
span jcz{ %k} = {W(t)}.
Let the sequence {V/},V/ C L*(R) correspond to multires-

olution analysis on the time axis, {V;"'} correspond to mul-
tiresolution analysis for coordinate x;, then V""" =V;"®
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... ®@ V™" ® V] corresponds to the multiresolution analy-
sis for the n-particle function W,(z:,...,z.t). E.g., for
n =2 V;JE . {f : .f{zh T3) = Ly kg 'ﬂ'khk:q&z{ml — kyy T3 —
k2)s upy € £3(2%)}, where ¢*(z1,x2) = ¢(z1)d(z2) =
¢' ® ¢*(xy,x2), and ¢'(z;) = ¢(xi) form a multiresolution
basis corresponding to {V;"}. If {¢'(z, —£)}, £ € Z form an
orthonormal set, then ¢*(x, — k,, 3 — k3) form an orthonor-
mal basis for 1'?. So, the action of the affine group generates
multiresolution representation of L*(R?*). After introducing
the detail spaces W7, we have, e.g. Vi’ = V' @ W{. Then the
3-component basis for Wg is generated by the translations of
three functions

P'(z1) ® ¥(z2),
¥ = ¥i(z) ® ¢’(xa),
U2 = ¥l(z,) ® ¥i(x2).

Also, we may use the rectangle lattice of scales and one-
dimensional wavelet decomposition:

F(zy,z2) = “{":ﬂ(ﬁ Vie @ Vk) Ve ® ¥j(z1,22),
where the basis functions ¥;, @ ¥, depend on two scales
2~" and 277. After constructing the multidimensional basis
we may apply one of the variational procedures from [3]-
[12]. We obtain our multiscale/multiresolution representa-
tions (formulae (40) below) via the variational wavelet ap-
proach for the following formal representation of the systems
from the Section 1 (or its approximations).

Let L be an arbitrary (non)linear differential/integral op-
erator with matrix dimension d (finite or infinite), which acts
on some set of functions from L?*(2%"):

¥ = T(t,ﬂ:l,:ﬂg,...}=
("I’l(t,mhﬂzg,...],...,‘I‘d{t,ﬂ:l,:l:g,...}],

11
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z; ENC RS nis the number of particles:

LY = L(Q,t,mi]‘l'(t, ﬂ:i] = 0, {3'5}
where
Q= (37)
Qdﬂ.d] ,d;,...(ty L1y T2yneny afﬂt B'fﬂ::l, ﬂfﬂﬂ:z, )[ Ft) =
dydy dg,... ;
PRTRE i qini]ig...(timl'pmij J[_}lu( } l{ ""j!”k'

Let us consider now the WV mode approximation fur the so-
lution as the following ansatz:

'I'N(t,;nl,u:g,...) e {E'E:I
N
Y Oy Ay @ By, @Cyy i (@ @3y ia)s

in 5 i_! |i=1+1 = 1

We shall determine the expansion coefficients from the fol-
lowing conditions (different related variational approaches
are considered in [3]-[12]:
- (39)
J(L®N) Ay, (t) By, (21)Ciy (22)dtde,da; . . . = 0.

Thus, we have exactly dN™" algebraical equations for dN™
unknowns a;,;, .. This variational approach reduces the ini-
tial problem to the problem of solution of functional equa-
tions at the first stage and some algebraical problems at the
second. We consider the multiresolution expansion as the
second main part of our construction. So, the solution is
parametrized by the solutions of two sets of reduced alge-
braical problems, one is linear or nonlinear (depending on
the structure of the operator L) and the rest are linear prob-
lems related to the computation of the coeflicients of the
algebraic equations (39). These coefficients can be found

12



by some wavelet methods by using the compactly supported
wavelet basis functions for the expansions (38). As a result
the solution of the equations from Section 1 has the follow-
ing multiscale or multiresolution decomposition via nonlinear
high-localized eigenmodes

W(t! L1y IE:-"} = Z 'ﬂ-ijUi@Vj[twmh m!l"'}!

(i.j)e2? .
VI(t) = VmoU(t) + ;}EN Vi(wt), w~2, (40)
U'(z,) = Uy (zs) + gu Ut (kz,), k. ~ 2™,

which corresponds to the full multiresolution expansion in
all underlying time/space scales. The formulae (40) give the
expansion into a slow part and fast oscillating parts for ar-
bitrary N, M. So, we may move from the coarse scales of
resolution to the finest ones for obtaining more detailed in-
formation about the dynamical process. In this way one ob-
tains contributions to the full solution from each scale of
resolution or each time/space scale or from each nonlinear
eigenmode. It should be noted that such representations give
the best possible localization properties in the correspond-
ing (phase)space/time coordinates. Formulae (40) do not use
perturbation techniques or linearization procedures. Numer-
ical calculations are based on compactly supported wavelets
and related wavelet families [13] and on evaluation of the ac-
curacy on the level N of the corresponding cut-off of the full
system regarding norm (32):

WV - WA <. (41)
So, by using wavelet bases with their best (phase) space/time
localization properties we can describe localized (coherent)

structures in quantum systems with complicated behaviour,
The modeling demonstrates the appearance of different (sta-

13



ble) pattern formation from high-localized coherent struc-
tures or chaotic behaviour. Our (nonlinear) eigenmodes are
more realistic for the modelling of nonlinear classical /quantum
dynamical process than the corresponding linear gaussian-
like coherent states. Here we mention only the best conver-
gence properties of the expansions based on wavelet packets,
which realize the minimal Shannon entropy property and the
exponential control of convergence of expansions like (40)
based on the norm (32). Fig. 1 shows the high-localized
eigenmode contribution to the WF, while Fig. 2, 3 give the
representations for the full solutions, constructed from the
first 6 eigenmodes (6 levels in formula (40)), and demon-
strate the stable localized pattern formation (waveleton) and
complex chaotic-like behaviour. Fig. 3 corresponds to (pos-
sible) result of superselection (einselection) [2] after deco-
herence process started from Fig. 2 or Fig. 4. Fig. 5 and
Fig. 6 demonstrate time steps during appearance of entan-
gled states. It should be noted that we can control the type
of behaviour on the level of the reduced algebraical system
(39) [12].

14
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Figure 3: Localized pattern-like (waveleton) Wigner function.
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Figure 4: Entangled-like Wigner function.
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Figure 5 Section of the coarse level approximation for Wigner function.
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Figure §: Section of the finest level approximation for Wigner function.
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