Introduction

Observables with τ Leptons at LHC and LC Structure of \mathcal{E} vent Records and Monte Carlo Algorithms

Z. Wąs (Cracow, INP & CERN)

G. Bower (SLAC), C. Biscarat (Fermilab), K. Desch (Hamburg U.), A. Imhof (DESY),

B. Kersevan (Lubliana), T. Pierzchała (Silesia U.) and M. Worek (Cracow, INP)

Points:

- Physics elements taken from KORALB, KORALZ etc. by S. Jadach et al.
- CP-parity sensitive observable at LC in $H/A^0 \rightarrow \tau^+ \tau^-$ decay channel.
- Problems of the deterministic event records.
- Summary and Outlook.

- T. Pierzchala, E. Richter-Was, Z. Was and M. Worek, Acta Phys. Polon. B 32 (2001) 1277
- Z. Was and M. Worek, Acta Phys. Polon. B 33 (2002) 1875
- G. R. Bower, T. Pierzchala, Z. Was and M. Worek, Phys. Lett. B 543 (2002) 227
- K. Desch, Z. Was and M. Worek, Eur. Phys. J. C 29 (2003) 491
- K. Desch, A. Imhof, Z. Was and M. Worek, "Probing the CP nature of the Higgs boson at linear colliders with tau spin correlations: The case of mixed scalar pseudoscalar couplings," arXiv:hep-ph/0307331.
- P. Golonka, B. Kersevan, T. Pierzchala, E. Richter-Was, Z. Was, M. Worek "The tauola-photos-F environment for the TAUOLA and PHOTOS packages", CERN-TH/2003-287.

$\mathcal{A}\!\text{ny}$ LC programme must include Higgs boson parity measurement

- 1. \mathcal{T} here are many possibilities for the measurement.
- 2. \mathcal{T} here are many scenarios of Higgs mechanism: SM, MSSM, ...
- 3. We will concentrate on the measurement using $H \rightarrow \tau^+ \tau^-$ decay; i.e. the measurement of Higgs boson couplings to fermions.
- 4. This measurement is to a laSrge degree production independent.
- 5. \mathcal{I}_t offers good example for software architecture as well:
 - (a) Hard production process
 - (b) Bremsstrahlung
 - (c) Primary, secondary, 3-rd, (4-th) levels of decays, \rightarrow density matrices
 - (d) detecor and accelerator effects.
 - (e) For high precision points (a) (b) and density matrix of (c) must go together \rightarrow troubles for architecture.
- 6. MC simulation is a must.

Production And Decay Process In Our \mathcal{MC} 's The cross section for the process $e^+(p_1)e^-(p_2) \to \tau^+(q_1,s_1)\tau^-(q_2,s_2)$ $d\sigma = |A|^2 wt \ dLips(p_1 + p_2; q_1, q_2); \ wt = (1 + R_{\mu\nu}s_1^{\mu}s_2^{\nu})$ • The partial width for the τ^{\pm} decay is given by $\tau^+(q_1) \to \bar{\nu}_{\tau}(k_1)\nu_e(k_2)e^-(k_3)$ $d\Gamma_e = \frac{1}{2M} |\bar{\mathcal{M}}|^2 (1 + h_{1\mu} s_1^{\mu}) dLips(q_1; k_1, k_2, k_3)$ $\tau^{-}(q_2) \rightarrow \nu_{\tau}(k_1') \bar{\nu}_e(k_2') e^+(k_3')$ $d\Gamma_e = \frac{1}{2M} |\bar{\mathcal{M}}'|^2 (1 + h_{2\mu} s_2^{\mu}) dLips(q_2; k_1', k_2', k_3')$ The cross section for the combined production and decay process $d\sigma = |A|^2 |\bar{\mathcal{M}}|^2 |\bar{\mathcal{M}}'|^2 (1 + R_{\mu\nu} h_1^{\mu} h_2^{\nu})$ $dLips(p_1 + p_2; q_1, q_2) dLips(q_1; k_1, k_2, k_3) dLips(q_2; k_1', k_2', k_3')$

Semi separation only, note the non-trivial spin correlations, Bell inequalities !

Density matrix

Only transverse spin correlations between τ^+ and τ^- are different for scalar and pseudoscalar Higgs

- The correlations can not be measured directly
- \bullet One need to measure distributions of τ decay products
- \bullet Precisely their transverse (to τ direction in Higgs boson rest frame) momenta
- \bullet Most sensitive to spin is $\tau^\pm \to \pi^\pm \nu$
- \bullet The largest branching ratio (25 %) has $au^\pm o \pi^\pm \pi^0
 u$

Classic approach

We take the most sensitive to spin $\tau^{\pm} \to \pi^{\pm} \nu$ decay channels and we look at $\pi^{+}\pi^{-}$ acollinearity in **Higgs boson rest-frame**.

In reality it is difficult at LC to reconstruct Higgs boson rest-frame precisely enough, because of beamstrahlung and uncertainties in reconstruction of jets (from Z decay).

Phenomenology Of General Case

 Decay probability for the mixed scalar-pseudoscalar case, formalism Kramer et al, see also Grzadkowsi 1995.

$$\Gamma(h_{mix} \to \tau^+ \tau^-) \sim 1 - s_{\parallel}^{\tau^+} s_{\parallel}^{\tau^-} + s_{\perp}^{\tau^+} R(2\phi) s_{\perp}^{\tau^-}$$

• $R(2\phi)$ – operator for the rotation by angle 2ϕ around the \parallel direction.

$$R_{11} = R_{22} = \cos 2\phi \qquad R_{12} = -R_{21} = \sin 2\phi$$

- Pure scalar case is reproduced for $\phi = 0$.
- For $\phi = \pi/2$ we reproduce the pure pseudoscalar case.

ACAT KEK, December 200.

• Higgs boson Yukawa coupling expresed with the help of the scalar–pseudoscalar mixing angle ϕ

$$\bar{\tau}N(\cos\phi + i\sin\phi\gamma_5)\tau$$

• Components of the spin density matrix

$$R_{11} = R_{22} = \frac{\cos \phi^2 \ \beta^2 - \sin \phi^2}{\cos \phi^2 \ \beta^2 + \sin \phi^2} \qquad R_{12} = -R_{21} = \frac{2\cos \phi \sin \phi \ \beta}{\cos \phi^2 \ \beta^2 + \sin \phi^2}$$

• In the obvious limit $\beta \to 1$ – the components of the density matrix coincide with matrix for rotation by an angle -2ϕ around z axis:

$$R_{11} = R_{22} = \cos 2\phi \qquad R_{12} = -R_{21} = \sin 2\phi$$

ACAT KEK, December 200

Scalar or Pseudoscalar?

ACAT KEK, December 200

Some Comments

- Extended standard universal interface of the TAUOLA with the complete spin effects for τ leptons originating from the spin zero particle is available.
- Interface works with any Monte Carlo generator providing Higgs boson production, and subsequent decay into a pair of τ leptons.
- Promising method for the measurement of the Higgs boson parity using decay chain $H/A^0 \rightarrow \tau^+ \tau^- \rightarrow \rho^+ \bar{\nu}_\tau \rho^- \nu_\tau \rightarrow \pi^+ \pi^0 \bar{\nu}_\tau \pi^- \pi^0 \nu_\tau$.
- The $\rho^+\rho^-$ decay products' acoplanarity distribution clearly distinguish the different parity states measurable using typical properties of a future detector at an e^+e^- linear collider.
- This technique is both model independent and independent of the Higgs production mechanism. Depends only on good measurements of the Higgs decay products.

1

Numerical results

*A*rchitecture

- To obtain the results special architecture of the software was developed:
- Production of Higgs in $e^+e^- \rightarrow ZH$ with $H \rightarrow \tau^+\tau^-$ from PYTHIA.
- Can be HERWIG and/or $pp \rightarrow$ H + X...
- TAUOLA universal interface was used for calculation of spin state. Impossible to use spin states of individual τ 's !!!
- TAUOLA for τ decays
- Bremsstrahlung in H/A/Z/ γ^*/τ decays is straighforward to control with the help of PHOTOS Monte Carlo.
- Other systematic errors due to genuine electroweak and QCD interactions were not studied at all so far.
- all segments communicate via EVENT RECORD only.

Final comments

This Is Physics \mathcal{N} ot F77!

- Similar problems are for event record filled by HERWIG
- In case when hard process is provided by the third party and fourth party is dealing with decays of something, difficulties acumulate.
- Non local spin- color-correlations are obstacle; I have shown how use of only kinematical information from main generator can help to overcome.
- Do we still need to care?
- Lots of arguments for yes, but also some for no.
- The problem is that at low precision the answer is **no** ...
- ... and turn to yes when NLO corrections have to be included in full.
- When is this point? Do we have to worry? For LHC? For GLC?
- What is the solution? Black Box Monte Carlo providing all in one?