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[1 Steps towards full two-loop SM calculations

Aim: so far little feeling for size of corrections from bosonic sector.
Very comple x: electroweak SM: 57 vertices 11 types of lines = “multiple factorial”

growth of comple xity
e QED and QCD on electr oweak processes: limited number of diagrams
e relativel y small number of diagrams involving top or physical Higgs

e full gauge boson sector (incl. Higgs- and Fadeev-Popov ghosts) large number of

diagrams

Steps of technical complications: self—ener gies — form—factor s — boxes

Complete calculations of obser vables available so far only for yu—decay

Full two—loop renormalization program: need full set of counter terms. e.g., on-shell

renormalization scheme o, M7 and My, as basic parameter s (QED-like scheme) —

calculate gauge boson mass counter -terms (equiv. MS vs. pole mass relation)

Theoretical issue: About the proper definition of masses of unstab le particles
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‘The pole mass of the weak gaug e bosons I

(at two—loops)

The mass and width of a massive gauge boson 1/ are defined via the position sp of the
pole of the full propagator (=zero of its inverse)

sp —mi — Iy (sp,mé,--+) =0,

Hv(p2, X ) transver sal part of the one-par ticle irreducib le self-ener gy (depends on all
SM parameter s)

e bare amplitude in terms of bare parameters (my — My, 11y — 1lyp)

e renormaliz ed amplitude in terms of renormaliz ed parameter s, e.g., MS (no indeXx)
Properties of the pole:

® gaug e invariant

e infrared finite

e comple x in general

Defines pole (on-shell) mass M and width I via

Sp = ]\42 —1MT.
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Renormalization

The renormalized amplitudes

1
HV,T(p27m%/,r7 o ) — H§/,3"(p27 m%/,r’ o ) + Hifl(p mVW e

to two-loops read (indices: O=bare, r=renormalized)

1 (p2, m¥g, ) + (0m3) D = (p° = m,) 620

T (p2 - m%/,r) 52\(/2)

7,0 J,r
60 = €r

where in the MS scheme order by order the mass-counter-term (5m%/)(j) subtracts the e—poles at p2 = m%/,r and the

wave-function renormalization counter-term 5Z‘(/J ) subtracts the e—poles remaining when p2 # m%/,r

Strictly speaking the renormalization of the ghost sector (in particular of the gauge parameter) is not discussed here, because
its not needed for what follows. In case of the Z the v — Z-mixing is an additional complication (see below).
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Pole mass and v — Z-mixing

In the neutral gauge boson sector because of v — Z-mixing we have to consider a 2 X 2
matrix propagator

H’YZ (p2) )
Mz, (p*) P> —my —Izz(p?)

Position of Z-pole:

H2z(3P) o
SP_’Yny'y(SP) o 0

sp—m% —llz5(sp) —

[1 Mixing term H?YZ star ts contrib uting at two-loops

[] Photon term Hw only contrib utes beyond two-loop

Notation for self-ener gies 11y, (V' = W, Z) with

Hw(pQ, .. ) — HWW(p27 .. )
H'QyZ(p27 o )
p2 o H’Y’Y(p27 oo )

Hz(p2, o ) — HZZ(p27 o ) +

Formall y, same formulae apply for W and Z.
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Pole mass “master formula”

By iterative solution of the pole formula to two-loops we obtain our master formula:

whic h yields the pole mass M? and the width T at this order. [1(%) is the bare (m = my)

or MS -renormaliz ed (m the MS -mass) L-loop contrib ution to II, and the prime

denotes the deriv ative with respect to p2. In this way we need to evaluate propagator

type diagrams and their deriv atives at p2 = m?.

Note: the p2—dependence has disappeared in this solution; it turned into a

mass—dependence whic h cannot be disentangled from the original mass dependence of
the off-shell amplitude .

Remark: the mixed II(M (m?2,m?2, - ) I (m?2,m?2, - - -) term is crucial for getting a

gaug e—invariant result for the two—loop mass counter —term
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Diagrams and topologies

To be computed on-shell (p> = m#): TI(p?) = Iy (p?) + I2(p?) + - -

{}+Q+i

353%

, i@ , @ @b +§+©M@
R R e
+Q +%+8 +Q
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Bosonic contrib ution

Number of diagrams | linear I2¢ gauge | nonlinear R¢ gauge

one-loop : ~ 90

two-loop : Total Total
Z 2348 1837
%4 4084 2942

With one massive fermion

two-loop : Total Total
Z 4410 3631
w 7780 5604




F. Jegerlehner, M Kal nykov 8

Gauge
. _ 2
is Lyj = —g-FYF™ — 55 (0,A")" — 557 (02" — §2Mzh)
where for the linear I2¢ gauge is F+ = Oy T/Vi T i&w My p*
and the nonlinear R¢ gauge is defined as =0, T/Vi T iéw My ¢* F ieA, VVi + g2 W sin® Oy Zy, T/Vi

cos Ow

The old vertices:

{Au, Z,} WigT absent

{Ag, Zo, AYAy, Ay Z,y, 2, 2,y WEWF

{Al“ ZM}_:t *

W {cy, Az}

The new vertices:

{AuAua AuZua ZuZu}ﬁini

{A“, Zu} Wiﬁi {C’Yv AZ}
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Evaluation of 2—loop self—ener gies

There exist a number of programs, whic h calculate the “b ubble—diagrams” (analytical), obtained by low
energy expansions, but also arbitrar y self-ener gy diagrams (analytical and 1-dimensional

integral-representations):

e aclass of massive 2-loop-integrals
, Whic h depend on one scale only have been

implemented in ONSHELL?2

in general exact analytic results are not known and one has to resort to series expansions at low or
high energies
, whic h

may be combined with methods of conformal mapping and Padé-resummation,

a combined analytical-n umerical program for 2—loop self-ener gy functions has been developed by the

W"urzb urg/Leiden—Collaboration

for the reduction of integrals to a basis of standar d-integrals there exist packages whic h solve the
systems of recurrence-relations
. Utilizing relations between integrals in diff erent dimensions D the problem of

irreducib le numerator s could be solved




F. Jegerlehner, M Kal nykov 10

e For integrals showing up in alarge mass expansion the package TLAMM

is available.

e Various expansions with respect to small parameter s may by utiliz ed
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Evaluation by expansion

Check of gaug e invariance: Rg gaug e (independent gaug e parameter s £y, €7 and 57) Then there are

several scales: mw, VE&wmw, Mz, VEzmyz, myg
We perform expansions in 3 steps:

Q Taylor (naive) expansion in (fv — 1): l.e., propagator s of the vector bosons and associated Higgs
scalar ghosts look like

DY, (p)

Ay (p)

where V =W, Z.
Q Expansion in the small parameter

2
sin? Q=1 — W (.94

2

my

by whic h m%,v = m2Z (1 — sin? @W); no—Hig gs diagrams then are one—scale and can be calculated
analyticall y with the package.

O Diagrams with Higgs—lines are expanded for large mg in
z=my/m%<0.64

using the package
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Gauge invariance

As we know, resonant Z and IV bosons decay mainly into fermion pairs. Indeed, if we switc h off the
fermions (as we do here) the gaug e bosons are close to stable! For the purely bosonic contrib utions
alone the imaginary part of H(p2) on the mass-shell is zero at the two-loop level. This is due to the fact
that in the bosonic sector we have the physical masses M = 0, Mz, My and Mg and by inspection of
the possib le two and three particle intermediate states one obser ves that all physical thresholds lie above

the mass shells of the 1/ and Z bosons, i.e., the self-ener gies of the massive gaug e bosons develop an

imaginary part only at p2 > M‘Z/ (to two loops in the SM). On kinematical grounds imaginary parts could

show up from the Higgs or Faddeev-PopoVv ghosts, whic h have square masses £VM2 , for small values of
the gaug e parameter . However, as we have verified, the two-loop on-shell self-ener gies are gauge
independent. This implies that ghost contrib utions have to cancel and hence cannot contrib ute to the
imaginary part. Thus sp = M‘% in our case. In higher orders for the Z—propagator one gets an imaginary
part as soon as p2 > 0, from diagrams like

For the 1/ —propagator an imaginary part is only possib le for p2 > M2, because charge conser vation
requires at least one IV in any physical intermediate state.

Drawback of our choice of expansion about &; = 1: analytic structure (ghost thresholds) lost: do not get

correct imaginary part from ghost contrib utions !
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Examples:

1.) threshold p? = 4€7 M2 of

Z — ¢°¢° production, ¢° the neutral Higgs ghost

whic h is below the Z mass-shell p? = MZ when £z < %
2.) threshold p? = SWMI%V of

W= — ¢~ production, ¢ the charged Higgs ghosts

whic h is below the W mass-shell p* = M7, when &y < 1.

Thus for small values of & we do not get correct imaginary part diagram by diagram. However, ghost
contrib utions must cancel on-shell. Thus by gaug e invariance , whic h we check we know that we get the

correct result. At one—loop one may check this analyticall y.

Cancellation is highly non-trivial: a consequence of the Slavnov-Taylor identities, whic h tell us how Higgs
ghost, Faddeev-Popov ghosts and scalar components contained in the gauge boson fields decouple from

physical amplitudes like the physical width.

For gaug e parameter s £ > 1 the imaginary part of the 1/ and Z self-ener gies in the bosonic sector up to
two-loops is zero, by applying the Cutkowsky rules and inspecting

allowed by the SM Lagrangian. While for £ > 1 the imaginary part is zero for each
individual diagram, for small enough values of the gaug e parameter s a nontrivial cancellation must take
place. An independent direct check of this is possib le by considering the problem in the limit & — 0, for

example .
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Results

UV renormalization is exact (analytic);
UV singularities (poles 1/ and 1/¢) are not affected by SSB;

— check against RG results within unbr oken theory
confirms IR finiteness of on—shell mass for both Z and W

gaug e invariance of position of pole sp;

requires taking into account tadpoles [

large m g expansion breaks down at large m g
because of strong coupling problem (gets non-per turbative)

relation between MS and pole mass exhibits propor tional to m‘}_I, whic h violate

Veltman’s screening theorem: in observables at L-loops:

X(mg) — O(G,m3) 1 In(my /Mw)?) as myg — oo

2

]]\\/I/_,VQV as they should. [
Z

The fake terms drop in sin? Oy = 1 —

behavior for intermediate Higgs masses: looks O.K. down to
about 130 GeV

complete 2-loop calculation of fermionic corrections incl. QCD complete

one of the main ingredients of full 2-loop corrections to pu—decay:
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Form of results

2 2 2
e (1) € (2)
xM 4 x®
1672 sin? Oy ) v ( 1672 sin® Oy ) v

All parameter s in M S scheme.
Six coefficients calculated analyticall y. Expansion in powers and log’s (i.e., is an asymptotic expansion

not a naive Taylor expansion). Expansion coefficients Ai,j given by a small set of transcendental
constants like:

™
— ~ 1.813799365...,
V3

V3

4Cly (%)
9

nCly (T) ~ 3.188533097...

In3 ~ 1.992662272...,

~ 0.260434137632162...,
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MS mass in terms of on-shell mass

Inverse of “master formula™ express all MS parameter s in terms of on-shell ones:

n%,::_M%_fﬁ)_{H$)+H$k$w}

—Z (Am3) <1) 10 — (Ae)D = J ¢ iV
] 86

sum runs over all species of particles j = Z, W, H

2
A 1 e 1
(Am?)V = —Rell}V = M5 x(V
o 1672 sin” Oy .y
m<=M?#, e=eos m2=M?+
J J J J

stands for the self-ener gy of the jth particle at p2 = m? in the MS scheme and parameter s replaced by

J
the on-shell ones. Includes a change from the MS to the on-shell scheme also for the electric charge

) =eos 1585 (3 () 5]

with g /4m = a ~ 1/137 — T1(1) depends on e by an overall factor €2 only,

M2 2 ~ (1)
[ﬂn(u2>_§]HV'
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On-shell scheme mass counter -terms

Identifying m%/ = m%/O = MXZ/ + (5M‘2/ in inverse MF = on-shell gauge-boson mass counter -terms

OMZ
OME = —Re|IIy} + 7} + I

0 = 1y 0 =)
52 v T (0 ) )a—eOHv,o

7,0

+) (6M7H)W

Zge - Zos — 1 M

in terms of the original bare on-shell amplitudes

ﬁ$,0 = H%f)o(p mV07

and the bare on-shell counter -terms (5Mj2 and Je.

The second equality gives (5M‘2/ in terms of the singular factor ZW = m%/,o/m%/(u) and the finite factor
Z0s = m%//M‘Q/ These will be needed in two-loop calculations of obser vables in the on-shell scheme.

Explicit expressions in
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[0 The quark pole mass

The tensor decomposition of the one—par ticle irreducib le self—ener gy of a massive
fermion Y (p, m, ...) has the form

~

YX(p,m,...) = ip [}i(pQ, m,...)—vC(p?,m,.. )}

e [Bm.. =D )]

~ ~

A, B, C’, D Lorentz scalar functions depending on all parameter s of the SM. At
The position of the pole M is given the zero of the inverse of the
connected full propagator. By iterative solution we have up to 2-loops:

‘ :1+21+z2+212’1|

Is the (m = myg) or (m the MS -mass) L-loop contrib ution

to fermion self-ener gy, the prime denotes the deriv ative with respect to p and

~ ~ ~

X(p,m, ... +@p+mo) X 4

) = S, o

and define dimensionless “on-shell” amplitudes X, ¥’ by

[—mofi + moé} S = —mOZ(mo, .. )
—— ™o
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~ / i ~ ~ ~ /
[E]A = [( a.A )] = [A—|—2p2A—|—2m(2)B] = Y (my, ...
p=img 0(1p) S—imo 2__ .2

b =—my
where X (p?,...) denotes the derivative of X (p?,...) with respect to p.

In this way we need to evaluate propagator type diagrams and their deriv atives at
p2 — m2

What is the interpretation of the comple x mass

M=M — 3.F’

2

We define the pole mass M and the on—shell width 1" as in the bosonic case by (look at
%) )
M2:M2—z'MF:M2—F2/4—iMT’

such that

/ / M/ /
M =\/M?-T"/4 ; r=—-T

Since M = M' + O(a?) and I’ = T" + O(a?) for the O (v, ) terms considered in this
paper we can identify M = M’ and I' = I" in the follo wing.
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[0 Diagrams and topologies

To be computed on-shell (p2 = mf):

DO <D<

DD <D <D <>

— Y — Z W

The two-loop one-par ticle irreducib le diagrams contrib uting to the pole mass of a quark.

@¢ is the neutral pseudo-Goldstone boson and ¢ is charge pseudo-Goldstone boson.
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The two-loop tadpole diagrams to be included for gauge and renormalization group

invariance .
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[0 Reduction to a set of master -integrals

In order to check gauge invariance we perform all calculations in the Rg gaug e with

three independent gauge parameters &y, €7, f,y. — TarasoV’s recurrence

relations

JO12 Vvoo12 (A,a,3,0) V1112

New master diagrams appearing in this two-loop calculation. Bold, thin and dashed
lines correspond to off-shell massive, on-shell massive and to massless propagator,

respectivel .
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Analytic result

2

/ (8% (&
Yo £ 38 e = lim ( & )y z 5 Z<2 1) Z<2 2)
{22 + X135 }gs 65%( 20+ Bro¥io + e [~ Zaa. + 5Zaa, |

(8% 62
s = {ZOD[1 + 2m? X+ z00[1 2
+47T 1672 sin 0W p { [ + 2mj 87’”%’ ] as,0 + [ + mt 8

2 2 2
Qg e m m
In? =t t -+ In —%

47 1672 sin? Ow Q2 2
1 1 18w? + 21 17 22 17
—|——ln< >(1—wt)( wi U +17) g, 220+ 17

1 — —
Wt Wit 8wt

—I—(l —wt) 2wt

1+ 2w:)(2 1 1 — W2
(1 4+ 2w) (2 + wy) Inw, In (1__>_|_ + wr — wj 102 o

2(,L)t W

4wt—|—51 1_i +(1+wt)
8wy 4wy

(1= wy)? — (42 + Ty — 9)Li (;)

1 3 . 1 . 1
) (—) — —LI 3(—) —lnthl 2<—>
' Wt 2 Wt Wt
1

_) N iln (1 - wi) [In® wy + 6]}

Wi

+(1 +yz)?(1+y3) (17 + 41yz + 17y%)

180sy% {3(2L1 3(yz) + Li s(—yz)) — 3¢2In(1 + yz)
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—2Inyz(2Li 5 (yz) + Li 2(=yz)) — In® yz(In(1 — yz) + %ln(l +yz))}

L —y) (U +y2) (07 + 41yy +179%)
18w:ys

(2l ys(n(1 —yz) + 5 (1 +y2)) + 211 () + Li 2(-2)}

4 (1 +yz) (5_4 wtYz )x
9  y3 (1+yz)?

{(1 +y2)(1+4yz +y%)
(1+yz)

—2Inyz(2Li 5(yz) + Li 2(~yz)) —In®yz(In(1 — yz) + %ln(l +yz))]

[3(2L1 3(yz) +Li 3(~yz)) — 3¢ In(1 + yz)

+(1—yz)(1+4yz +y7)[2Inyz(In(1 — yz) + %ln(l +yz)) + 2L 2(yz)]

(1 + 2yz — 24y% + 2y + y5)
(1-yz)

~ 1yz(2+9yz + 3yz + 16y5 + 6y7)

4 (1-yz) 4 1+yz)(1-yz)

9

+7(1=y2)*(1+yz) In(1 +yz) +

3yz(143yz)(4 —yz + y2
+_yz( yz)( Yz yZ)lnyZ

Li2(~yz)

In? Yz}

14+y2)3(9 + 32yz +92%) . 447 125 (1 + y2
At yz) 0432z +97) 5, o 447 125 (11 yy)
dwi(1 —yz)yy 16 9  yz
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32 1 (1742 — 19 17
+20[1 — wy Yz (1+yz)"(17yz Yz + 17)

3 m]{@ —4¢2In2} + 8t

1 685 17 67 335 497 o 17 4 25

_ "~ In2 _20Y _ Iy S
o vz 36 3642 24y, 2407 Yz Yzt 1, )

(1+yz)
24wy (1 — yz)
1, 20— 39z —y%2 — 80y3, — 20y% 7 — 49y + 17y% — 5545 — 16y%)

3621 y2(1=32) T -yt )

1 4157  425(1+vy%) = 2561(1 + y%)
ol 7202 * 96y J
1. 187 17 133 535 211 , 17 . 50

5,013 Yo T2y, T VT Vr TV 1y,

In(1+yz)

_|_

(51y3 + 113y% + 134y5 + 237y% + 197y, + 68]Iny

}

}

Utym+vi) 3  ym  (+yz)' (1+yz)
+ ym)? 2w (1+ym)?2 v Yz
111+ y#) (1 +yu)? 1 (1+yz)4}

‘I‘ 8Nc ‘|‘ -
8y% 2 vy
9 3 wy (625 + 1286y + 625y2)

—_ —_ 2 _—
gyt gyt~ 5 1+ yn)?

Iy lin(1 — yrr) + 5 1+ ye)]ll(1— 4%) — 5 (1 + y) Ing]
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1124 8yy — 10y%, — 393 11 (1 6 — 63 512
+ 8y — 10y — 3yx lnzyH—l———( +ym)( yu + 5y3r) .
YH 8 Wi YH

(1+yu)*(5 — 62yu + 5yF) n(1 + ) — 51 (1 —yu)*(1 +y#)
2

—CoIn(1 +yg
Y . | Vi
1 (1—ym)(1+ 5 — 28ym + 5y3) | - |
+w—( yHy)2( yH){( yff Vi), o(—ym) + (1= yu)°Li 2(ym)}
t H

+wit (1 - yH?);Ijl + i) {g[ZLi s(yr) +Lis(—ym)] —Inyg[2Li o(yr) + LI 2(—ym)]})

14+4/1—

In limit of zero mass gauge bosons O () and O(a?):
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[0 Numerical illustration

— electroweak 2 - loop

—-- QCD 3 - loop

— elecfroweak 2 - loop

—-- QCD 3 - loop

L00 400 800 1000 00 400 00 800
M, (GeV)

Electr oweak O (o) correction to My /my(my) — 1 [left] and my(M;)/M; — 1 [right], in
comparison with O(ag) and O(oz?) QCD corrections as a function of the Higgs boson

mass My.
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Gaugeless limit result (FKSV03) vs. full result

MS:compare

600

mH(Gev)

Electr oweak O(ozozs) correction gaugeless vs. full correction.
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2 - loop bosonic e ---- 2 - loop bosonic

—-= 2 - loop QCD ] e —-- 2 - loop QCD
— full electroweak 2 - loop I — full electroweak 2 - loop

Various two-loop corrections to the relation Ay = M2 /m3,(My ) — 1 as a function of

the Higgs mass Mg for intermediate Higgs masses.
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electrowesk

The complete one- and two-loop correction to the relation Ay = MZ/mé (My) — 1 as

a function of the Higgs mass M g for intermediate Higgs masses.
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Numerical comments

For the two-loop calculation we have to take into account the part proportional to € of the one-loop propagator

type integral

ddq
J =
/ (q2 —m%—i—iO)((k—q)2 —m%—l—i()) ’
where d = 4 — 2¢. Part of J linearin € is

Clo (11)—=Cls (m — 71)+Cla (12) —=Clo (7 — 7'2)) +(9(€2)},

where )\(m%, m3, kz) —=mi+m3+k*—2m2k?—2m2k?—2m2m?2 and the angles 7; are defined via
k? + m? — m?3
2m1 V ]{72

Cls (0) is the Clausen function Cls (6) = % i (€l | o (e_ie)] . This expansion is directly applicable in the region

where A < 0, i.e. when (m1 — fm,g)2 <k*< (m1 + m2)2.

COST1 = COS Tg =
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For the region A > 0 we need the proper analytic continuation.

Lio(z:) = (1 = pi)(—2i)7Li 2(1/2:) + O(e)

where p1 and p2 are some numbers, which we will define later and

2
[\/)\(m%,mg, k2) +mi —m3 — kz]
4m32 k2 ’
2
[\/)\(m%,mg, k2) —mi 4+ m3 — k:Q]

4m32 k2

z2

Firstly, we note that the causal prescription amounts to the following rule for A (A > 0)
In(=X(mi,m3,k%)) = In(A(mi,ms, k%)) — i,

V-NmEm3, k) = —iy/A(m3,m3, k?).
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The function Li 5 (2) is real for real z and |z| < 1. Forreal z and |z| > 1 we change argument z — 1/z using the relation

Lio(2z) + LI 2(%) = —%IHQ(—Z) — (2,

by which an imaginary part shows up. This change of variables can be done from the very beginning by an appropriate choice

of the values of the coefficients p;:

0<z; <1l = p;j=1; In(—z;)=In(z;) + i,

zi>1 = p;=0; In(—z;) =In(z;) —im.




F. Jegerl ehner, M Kal nykov 34

Assuming m1 < ms in the following we have

o fork? < (m1—m2)’ =21 <1,20>1

. 1 ) 1 1
LI 2(2) — 2L 2(2:1) — §ln2 21+ 51112 29

—In(z122) In (A(ml’kgb%k )> + O(e?) }>

° fork:2 > (m1 —I—m2)2:>z1 <l,z2<1

Li 2(21) — 2|_i 2(22)

1 2 1 2 A(m%7m§7k2)
_5 In® 21 — 5 In® zo9 — lﬂ(zlz2)1n ( k2

+im [2 — 2¢eln (A(m%,m%, kQ)) + 0(62)}> .

k2




In particular, the imaginary part of J in each order of € coincides with that obtained from the exact result

5 o A/ A(MZ,m2 k) (A(m2,m3,k*)\ " T(l-—¢
IsziW@(k —(m1—|—TTL2))\/( )< ( )> ﬁ

k2 k2

In the limit, when one of the masses vanishes, the result is

Li o(u) + O(?) »,

with u = k? /m>.

The transition from the bare parameters to the renormalized ones requires differentiations of the one-loop propagators with
respect to all parameters, couplings, masses and external momentum. The integrals obtained thereby can be reduces again to

integrals of the original type J plus simpler bubble integrals.
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1
ir2—eT(14¢)

in normalization

BO( 2 ; — (:LLQ)6

m2x 4+ mi(1 —z) — p?z(l —z) —i0

p® = M?. So that finite part I and linear in € parts L are

1

2 2
my mo 2

2 2 2\ p .
Fo(mhmmp)——/dil?ln Fl“FF(l—%)—Fﬂ?(l—x)—'o
0

1
1

oG mdip?) = [ ot

0

To get numerically stable results it is necessary to work on with sufficiently high accuracy (our experience: we get an
accuracy of 40 decimals) (wenn calculating with 100 decimals). The 70" causal prescription is introduced in program as small

number 1089,




F. Jegerl ehner, M Kal nykov 37

Two-loop bubble type diagram.

Another type of integral appeared in the diagrams with Higgs and top-quark is the finite part of two-loop bubble master

integrals <I>(z) with two-different non-zero mass scales. The standard representation for this integral is

Cls (2 arcsin \/E) :

Li2(352) +2In® (152) —In(42) +2¢2 | , 2z > 1

This representation is not stable numerically at z ~ 1.

The universal representation, stable for any value of z is

CI)(Z) |_| 2(7’]) — |_| 2 (—
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Connection with RG functions
of unbroken phase

In the SM it is interesting to compare the RG equations calculated in with the ones obtained in the

2 — m?

Let us remind that at the tree-level Is given by v? = = 3

where m? and )\ are the parameters of the symmetric scalar potential

V=—m?¢té+A(¢t)°

(cos O —2 By + sin? Oy Bg// ) ,
g g

where the 2-loop RG functions 3, B4/, 8x, Ym2 have been calculated in the unbroken phase

We have verified in the M .S scheme, that these relations are valid up to 2-loop order in the broken phase with the
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same RG functions. Thus the RG equations for the M S masses in the broken theory can be written

. 192(/~L2) 2/ 2
=" (©°)

4
_1g +QI(M2)m2 2
(u%) = 2m*(p?)
2) — lyf(ﬁ)
2 AMp?)

(1

1)
)
)

m?(u?) .
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Together with

‘Charge renormalization: I

Z’Y’Y

Only IL,(0) and II 2., (0) needed (bubble diagrams)

all renormalization counterterms in physical sector available!
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0 First complete two-loop calculation of 2 — 2:

Fermi constant Gu in terms of &« Mz and My (low energy expansion excellent approximation):

2

mu(Gev) | Ar@ | Ap@as) | Apaad) [ Ap(@) | A | Ap(GRasm)) | Ap(GEm?)
100 283.41 | 35.89 7.23 28.56 0.64 —1.27 —0.16
200 307.35 | 35.89 7.23 30.02 0.35 —2.11 —0.09
300 323.27 | 35.89 7.23 31.10 0.23 —2.77 —0.03
600 353.01 | 35.89 7.23 32.68 0.05 —4.10 —0.09

1000 376.27 | 35.89 7.23 32.36 | —0.41 —5.04 —1.04

Table 1. The numerical values (X 104) of the different contributions to Ar specified in the table are given for
different values of m g and My = 80.426 GeV (the W and Z masses have been transformed so as to correspond

to the real part of the complex pole).

The table shows that the two-loop QCD correction, AT(O‘%), and the fermionic electroweak two-loop correction,
2

Arégrm are of similar size. They both amount to about 10% of the one-loop contribution, AT(O‘), entering with the

2
same sign. The most important correction beyond these contributions is the three-loop QCD correction, Ar(aas),
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2 4
which leads to a shift in My of about —11 MeV. For large values of m g also the contribution Ar(Grosm;)

2
becomes sizable. The purely bosonic two-loop contribution, Afrbis), and the leading electroweak three-loop

3 6
correction, AT(GFmt), give rise to shifts in MWW which are significantly smaller than the experimental error
envisaged for a future Linear Collider, (5M§[}/(p’LC = 7 MeV.
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[0 Conclusion and perspectives

SM on-shell self-ener gies calculated; emphasis on analytical approach as far as
feasible so far

e Wand Z O(a?):
— bosonic: two-scale integrals expansion in sin’fy, = 1 — M3, /M2,
Mz /m3, (V =W, Z), six expansion coefficient analyticall y or analytic in terms
of master —integrals, whic h for more than one scale in general are available as

1-dimensional integral representations only whic h can be calculated numericall .

— fermionic (two—loop diagrams incl. one fermion loop): massless fermions exact;

one heavy quark (top) expansion in sin“fy, = 1 — M3, /MZ, M /m?; and

Mz /mi (V =W, Z). Six expansion coefficients in each expansion parameter
or in terms of master —integrals.

o t O(aany):
— assuming diagonal CKM matrix, exact analytic for the heavy quark (f) with a
massless quark (b) in the doub let.

— as a byproduct: tree and O(Ozs) partial decay width ¢ — bIV (diagrams with
W, ¢ lines)




F. Jegerl ehner, M Kal nykov 44

Next steps:

e off-shell self-ener gies = one more scale can be expressed in terms of
master —integrals whic h may be represented as yb 1-dimensional integral

representations.

e the same for vertex functions

e goal full 2—loop 2 — 2 calculation of obser vables (

e e.g. for 2-loop Bhabha project




