- This session is devoted to future CMB polarization satellites.
 - -EPIC
 - -PIXIE
 - -LiteBIRD
 - -COrE
 - -PRISM (a new L-class mission)

Three Elements of satellite project

~ scientific objectives, full success criteria

~ mission components, bus system, launch vehicle, etc.

Project

~management, cost, schedule, etc.

Example questions about "Mission"

- Focusing on tensor-to-scalar ratio, or broader topics?
- $\delta r < 0.001$ required?
- $\delta r < 0.001$ sufficient?
- Scientific justification for non-detection case?
 - see the next page

Particle physics example: LHC

- No lose theorem of LHC
 - Either discover Higgs or rule out the Standard Model of particle physics
 - → multi billion \$ awarded
- There were many other models that could explain all the experimental results.
- "Standard" model was a social construct, based on "Occam's razor" principle
 - so far simplest models have always won in fundamental physics.

LiteBIRD mission as example

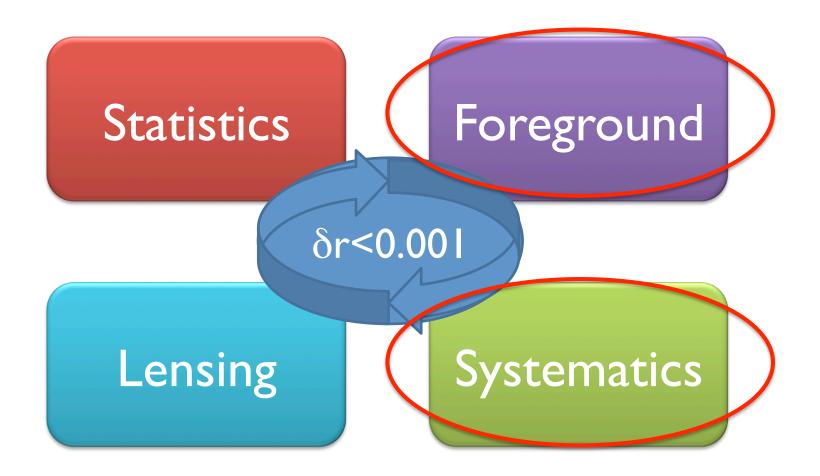
- Check simple well-motivated inflationary models
 - requirement on the uncertainty on r $\delta r < 0.001$ (stat.

 syst.

 foreground

 lensing)

No lose theorem of LiteBIRD


- ➤ Many inflationary models predict r>0.01 → >10sigma discovery
- ➤ Simple well-motivated inflationary models (single-large-field slow-roll models)

have a lower bound on r, r>0.002, from Lyth relation.
$$r=\frac{1}{N^2}\left(\frac{\Delta\phi}{m_{\rm pl}}\right)^2\approx 2\cdot 10^{-3}\left(\frac{\Delta\phi}{m_{\rm pl}}\right)^2$$
 H. Kodama, K. Kohri, MH

- > no gravitational wave detection at LiteBIRD -> exclude all these simple well-motivate inflationary models (i.e. r<0.002 @ 95% C.L.)
- Early indication from non-space-based projects \rightarrow power spectra at LiteBIRD!

Similar to LHC Higgs case (Occam's razor)

System issues

Example questions on "System"

- LEO or L2 (or else)?
 - LEO: Effects of the Moon (thermal, sidelobe)
 - L2: Cosmic rays
- How many bands do we need in 50-300GHz for foreground separation?
- Beyond the standard systematics?
 - combined effect of systematics and foregrounds

• Achieving $\delta r < 0.001$ is a huge experimental challenge, which looks as crazy as Higgs hunting in proton-proton collisions where signal-to-noise is 1: ~100000000000.

 We need to exchange ideas and have constructive discussions.