

QCD hard scattering at J-PARC

Marco Stratmann

Outline

- motivation
- theor. framework I: pQCD & hard scattering
- expectations: pion and photon production
 @ J-PARC
- theor. framework II: resummations example: Drell-Yan process

I. motivation

the large x frontier exploring the limits of pQCD

exploring the nucleon is of fundamental importance

all-order resummations

July 8th, 2008

compelling reasons for hadronic physics @ J-PARC

a great place to test and learn about QCD:

- models for parton densities
- theor. prejudices about $x \rightarrow 1$ ("counting rules")
- exploring the limits of perturbative QCD methods
- probing the transition from partonic to hadronic d.o.f.

"counting rules": do they count?

Farrar, Jackson; Close, Sivers; Blankenbecler, Brodsky; Brodsky, Gunion; Brodsky, Schmidt; ...

latest global analysis results from CTEQ arXiv:0802.0007 [hep-ph]:

much less is known for helicity-dependent pdfs:

model	∆u/u	∆d/d
helicity retention	1	1
stat. parton model	0.75	-0.5
rel. const. quark model	1	-1/3

Farrar, Jackson; Brodsky, Schmidt; Brodsky, Burkardt, Schmidt; Avakian et al.

Bourrely, Buccella, Soffer

Isgur, Thomas, Close

recent developments

1st global analysis: evidence for flavor-asymmetric pol. quark-sea awaits further exp. confirmation

de Florian, Sassot, MS, Vogelsang arXiv:0804.0422 [hep-ph] non-zero OAM can delay $\Delta d/d \rightarrow 1$ to x $\simeq 0.75$

Avakian et al., arXiv:0705.1553

II. theoretical framework (part I) pQCD & hard scattering

QCD is the theory of strong interactions - how can we make use of perturbative methods?

confinement

non-perturbative hadronic structure

e.g. Lattice QCD

interplay

asymptotic freedom

Gross, Wilczek; Politzer

hard scattering cross sections

perturbative methods

goal: probe hadronic structure with weakly interacting quanta of asymptotic freedom

key: factorization

July 8th, 2008

perturbative QCD can be used to make *quantitative predictions* if $\alpha_s(p_T) \ll 1$ (exploiting asymptotic freedom of QCD) Gross, Wilczek; Politzer

key tool: factorization theorem & universality Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.; ...

... but the details are not:

- E factorization requires introduction of unphysical scales $\mu_{f,r}$
- **pqcD** valid only if p_T is "large enough" (α_s small) but where precisely?

scale dependence inherent to any pQCD calculation

• a measurable cross section $d(\Delta)\sigma$ has to be independent of μ_r and μ_f

 $\frac{d(\Delta)\sigma}{d\ln\mu_{r,f}} = 0 \quad \longrightarrow \quad \text{renormalization group eqs.}$ like DGLAP evolution like DGLAP evolution

if we truncate the series after the first N terms, there will be a residual scale dependence of order N+1 \rightarrow theoretical error

there is no such thing like "the right scale" (not even Q in DIS!)

the harder we work, the less the final result should depend on these artificial scales a powerful gauge of the reliability of a pQCD calculation

anatomy of a NLO calculation

a meaningful observable is insensitive to these long-dist. effects "infrared – safety"

potential problems at fixed-target energies

key question: do we really talk about *hard* scattering if \sqrt{S} is small ??

III. expectations

pion and photon production @ J-PARC

July 8th, 2008

potential hard probes at J-PARC energies

Drell-Yan lepton pairs, inclusive pions or prompt photons, and charm

NLO QCD corrections to all reactions are known:

U: unpolarized L: long. polarized T: trans. polarized

Drell-Yan		many papers (U,L,T) for J-PARC, see: Yokoya et al.; Kawamura et al.
pions	Geo Jos Contraction	Aversa et al. (U); de Florian (U,L); Jäger et al. (U,L); Mukherjee, MS, Vogelsang (T)
prompt photons	ee (Aurenche et al. (U); Baer et al. (U,L); Contogouris et al. (U,L); Gordon, Vogelsang (U,L); Mukherjee, MS, Vogelsang (T)

charm production will be discussed in my 2nd talk

July 8th, 2008

input to all pQCD calculations

50 GeV proton beam (polarization 75%) on fixed target target polarization 75%; dilution factor 0.15; integr. luminosity: 10fb⁻¹

single-inclusive pion production (unpolarized)

single-inclusive pion production (long./trans. pol.)

single-inclusive pion production (ALL & subproc.)

single-inclusive pion production (A_{TT})

prompt photon production

- the scale dependence and K-factors are equally good/bad as for inclusive pion production (\rightarrow focus on $A_{LL} \& A_{TT}$)
- we adopt the isolation criterion of Frixione (no fragmentation contribution; R=0.4, $\epsilon=1$)

prompt photon production ($A_{LL} \& A_{TT}$)

independent of the polarization and the process we observe

- × a large residual scale dependence also in NLO
- very sizable NLO corrections
- \checkmark interesting prospects to constrain pdfs at large x

need to improve pQCD calculations beyond NLO

IV. theoretical framework (part II)

resummations Drell-Yan process

resummations: why/where relevant

fixed order pQCD has many successes but also failures

key question: why problems in fixed-target regime and why often near perfect at colliders ??

at partonic threshold / near exclusive boundary:

- just enough energy to produce, e.g., high- p_T parton
- "inhibited" radiation (general phenomenon for gauge theories)

simple example: Drell-Yan process

"imbalance" of real and virtual contributions: IR cancellation leaves larges log's

July 8th, 2008

for single-inclusive pp cross sections:

logarithms related to partonic threshold

$${f \hat{x}_T} ~=~ rac{{f 2p_T}}{{\sqrt{\hat{s}}}} ~ o ~1$$

general structure of partonic cross sections at the kth order:

$$p_T^3 \frac{d\hat{\sigma}_{ab}}{dp_T} = p_T^3 \frac{d\hat{\sigma}_{ab}^{\text{Born}}}{dp_T} \left[1 + \underbrace{\mathcal{A}_1 \alpha_s \ln^2 \left(1 - \hat{x}_T^2\right) + \mathcal{B}_1 \alpha_s \ln \left(1 - \hat{x}_T^2\right)}_{\text{NLO}} + \dots + \underbrace{\mathcal{A}_k \alpha_s^k \ln^{2k} \left(1 - \hat{x}_T^2\right) + \dots}_{\text{``threshold logarithms''}} \right] + \dots$$

where relevant? ... convolution with steeply falling parton luminosity

$$d\sigma \propto \sum_{a,b} \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ab} \left(\frac{\tau}{z}\right) d\hat{\sigma}_{ab}(z) \qquad \qquad \textbf{z=1 emphasized,} \\ \text{in particular as } \tau \to \textbf{1}$$

resummations: how it is done

 $\alpha_s^k \ln^{2k} (1 - \hat{x}_T^2)$

may spoil perturbative series -

unless taken into account to all orders

resummation of such terms has reached a high level of sophistication Sterman: Catani, Trentadue; Laenen, Oderda, Sterman;

Catani et al.; Sterman, Vogelsang; Kidonakis, Owens; ...

- worked out for most processes of interest at least to NLL
- well defined class of higher-order corrections
- often of much phenomenological relevance even for high mass particle production at the LHC

resummation (= exponentiation !!) occurs when "right" moments are taken:

Mellin moments for threshold logs $\alpha_s^k \ln^{2k}(1-\hat{x}_T^2) \rightarrow \alpha_s^k \ln^{2k}(N)$

fixed order calculations needed to determine "coefficients"

• the more orders are known, the more subleading logs can be resummed

resummations: general structure

(slide from a talk by W. Vogelsang)

resummations: some LL exponents

(assuming fixed α_{ϵ}) unobserved parton Sudakov "suppression" $\exp\left[\frac{\mathbf{C_F}\,\alpha_{\mathbf{s}}}{\pi}\,\ln^2(\mathbf{N})\,-\,\frac{\mathbf{C_F}\,\alpha_{\mathbf{s}}}{\pi}\,\frac{1}{2}\,\ln^2(\mathbf{N})\,\right]$ DIS moderate enhancement, unless x_{Bi} large $\exp\left[\left(\mathbf{C_F} + \mathbf{C_F} - \frac{1}{2}\mathbf{C_A}\right)\frac{\alpha_s}{\pi} \ln^2(\mathbf{N})\right]$ $\mathbf{q}\mathbf{\bar{q}} \to \gamma \mathbf{g}$ prompt photons $- \exp \left[\left(\, \mathbf{C_F} \, + \, \mathbf{C_A} \, - \, \frac{1}{2} \mathbf{C_F} \, \right) \frac{\alpha_{\mathbf{s}}}{\pi} \, \ln^2(\mathbf{N}) \, \right]$ $qg \rightarrow \gamma q$ exponents positive — enhancement inclusive e.g. observed partons unobserved $gg \rightarrow gg$ $exp \left[\left(\mathbf{C}_{\mathbf{A}} + \mathbf{C}_{\mathbf{A}} + \mathbf{C}_{\mathbf{A}} - \frac{1}{2} \mathbf{C}_{\mathbf{A}} \right) \frac{\alpha_{s}}{\pi} \ln^{2}(\mathbf{N}) \right]$ hadrons

expect much larger enhancement

resummations: some phenomenology $pp \rightarrow \pi^{0}X$

de Florian, Vogelsang

resummations: window to the non-pert. regime

important technical issue:

resummations are sensitive to strong coupling regime

 \rightarrow need some prescription to avoid Landau pole

Catani, Mangano, Nason, Trentadue:

define resummed result such that series is asymptotic w/o factorial growth associated with power corrections

→ power corrections/k_T effects may be added *afterwards* if phenomenologically needed studying power corrections prior to resummations makes no sense

window to the non-perturbative regime so far little explored

July 8th, 2008

resummations: J-PARC

resummations seem to be mandatory at fixed-target energies

- ✓ technical framework available
- ✓ well-defined & systematic improvement of pQCD results
- ✓ often much reduced scale uncertainties
- ✓ window to non-perturbative regime

almost no quantitative studies at J-PARC energies yet; expect:

- very significant effects on cross sections
- partial cancellation of soft-gluon effects in A_{LL}
 in particular for prompt photons (simple color structure)
- reduction for A_{TT} (lack of gluons in $d\delta\sigma$)

notable exception: Drell-Yan process (of much relevance for J-PARC programme)

- dσ/dM, A_{LL}, A_{TT} Yokoya; Shimizu, Sterman, Vogelsang, Yokoya
- $d\sigma/dM/dq_T$, A_{TT} Kawamura, Kodaira, Shimizu, Tanaka

Drell-Yan lepton pairs at J-PARC

fixed order results are known up to NNLO

Hamberg, van Neerven, Matsuura; Harlander, Kilgore; Anastasiou, Dixon, Melnikov, Petriello

- NNLO corrections still fairly significant
- large corrections stem from near partonic threshold z $\simeq 1$

July 8th, 2008

Drell-Yan process: threshold resummations

first three towers of logs known: LL, NLL, NNLL

nice convergence NNLL sufficient

expansion reproduces f.o. results \rightarrow f.o. dominated by threshold logs

V. concluding remarks

scientific opportunities @ J-PARC

ground breaking ceremony in 2002

"This could be the discovery of the century. Depending, of course, on how far down it goes."

2008, almost ready to go

many avenues for important measurements exploring the limits of pQCD