Isospin dependence of the EMC effect

W. Bentz, T. Ito (Tokai Univ., Japan)
I. Cloët (Univ. Washington, USA)
A.W. Thomas (JLab, USA)

KEK Workshop, Jan. 10, 2009

Introduction

- Effective chiral quark theories are powerful tools to
* Previous results * Model
* Nuclear matter
* Distributions
* EMCs
*PW ratio
*PV DIS
* Summary describe quark distributions and structure functions of nucleons.
- Nuclear EMC effect showed: Nucleon properties are modified in the medium \Rightarrow Use chiral quark theories to assess also medium modifications.
- Our earlier work: Interesting results and predictions for the unpolarized and polarized EMC ratios for $N \simeq Z$ nuclei:

$$
\begin{aligned}
R(x) & =\frac{F_{2 A}\left(x_{A}\right)}{Z F_{2 p}(x)+N F_{2 n}(x)} \stackrel{\text { NR,no-medium }}{\longrightarrow} 1 \\
R_{s}^{H}(x) & ={\frac{g_{1 A}^{H}\left(x_{A}\right)}{P_{p}^{H} g_{1 p}(x)+P_{n}^{H} g_{1 n}(x)}}^{\text {NR,no-medium }} 1
\end{aligned}
$$

Here $x_{A}=A \frac{Q^{2}}{2 M_{A}{ }^{\nu}}=x \frac{M_{N}}{M_{A} / A} \equiv x M_{N} / \bar{M}_{N}$, and $H=J_{z}$ is the helicity of nucleus A.
Here: We point out some interesting effects for $N \neq Z$!

Previous results: EMC in finite nuclei

* Introduction
\& Previous results
- Model
* Nuclear matter
* Distributions
* EMCs
* PW ratio
*PV DIS
* Summary

Spin independent case: Nuclear vector potential leads to rescaling of Bjorken x, and plays the essential role!

Spin dependent case: Nuclear scalar potential (smaller quark mass) leads to quenching of quark spin sum and enhancement of quark orbital angular momentum!

Previous results: EMC in nuclear matter

\& Introduction
\& Previous results

* Model
* Nuclear matter
* Distributions
* EMCs
* PW ratio
*PV DIS
* Summary

"Transverse EMC ratio" is defined here by replacing $\Delta q(x) \rightarrow \Delta_{T} q(x)$ in the spin-dependent EMC ratio.

Model: Single nucleon

- Effective quark theory for single nucleon:
* Introduction
* Previous results

\& Model

* Nuclear matter
* Distributions
* EMCs
*PW ratio
*PV DIS
* Summary

Nambu-Jona-Lasinio (NJL) model, quark-diquark description based on the Faddeev method.
(see: N. Ishii et al, NPA 587 (1995) 617.)
We include scalar $\left(0^{+}\right)$and axial vector $\left(1^{+}\right)$diquarks.

- Quark distributions $\left(q_{N}(x), \Delta q_{N}(x), \Delta_{T} q_{N}(x)\right)$ in the nucleon calculated from Feynman diagrams

where $X=\left(\gamma^{+}, \gamma^{+} \gamma_{5}, \gamma^{+} \gamma^{1} \gamma_{5}\right) \delta\left(x-\frac{k_{-}}{p_{-}}\right)$.
Good agreement with empirical parametrizations!
Scalar and vector nuclear mean fields can be included in the quark propagators!

Model: Nuclear matter

- Nuclear matter equation of state constructed in mean
* Introduction
* Previous results

\& Model

* Nuclear matter
* Distributions
* EMCs
* PW ratio
*PV DIS
* Summary field approximation. Mean self consistent scalar and vector fields couple to the quarks in the nucleon. For example, the energy density for $N=Z$ becomes

$$
E(M)=E_{\mathrm{vac}}(M)+\gamma_{N} \int^{p_{F}} \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}} \sqrt{M_{N}(M)^{2}+k^{2}}+E_{\omega}
$$

$M_{N}(M) \ldots$ nucleon mass vs. constituent quark mass.

- For $N \neq Z$, an isovector vector field $\left(\rho^{0}\right)$ is included.
- After minimization, one obtains all masses as functions of density \Rightarrow Calculate quark distributions in the nucleon, nucleon distributions in medium (s. diagram below), and (by convolution) quark distributions in medium.

Operator insertion (spin indep. case): $\gamma^{+} \delta\left(y_{A}-\frac{\epsilon_{p}+p^{3}}{\bar{M}_{N}}\right)$, where $\epsilon_{p}=$ nucleon energy, $\bar{M}_{N}=$ mass per nucleon.

Binding energy of nuclear matter

* Introduction
* Previous results
* Model
* Nuclear matter
* Distributions
* EMCs
* PW ratio
*PV DIS
* Summary

Mean vector fields: $\quad \omega^{0}=2 G_{\omega}\left\langle\psi^{\dagger} \psi\right\rangle, \quad \rho^{0}=2 G_{\rho}\left\langle\psi^{\dagger} \tau_{3} \psi\right\rangle$ Vector potentials: $\quad V_{p(n)}=3 \omega^{0} \pm \rho^{0}, \quad V_{u(d)}=\omega^{0} \pm \rho^{0}$ $G_{\omega} \Leftrightarrow$ saturation point for $Z=N, \quad G_{\rho} \Leftrightarrow$ symmetry energy.

Effective masses in nuclear matter

* Introduction
* Previous results
* Model
* Nuclear matter
* Distributions
* EMCs
* PW ratio
*PV DIS
* Summary

$M \ldots$ constituent quark mass $\quad\left(M=m-2 G_{\pi}\langle\bar{\psi} \psi\rangle\right)$
$M_{s(a)} \ldots$ scalar (axial vector) diquark mass (pole of $q q$ t-matrix) $M_{N} \ldots$ nucleon mass (pole of q-diquark t-matrix).

Distributions in nuclear matter $\left(r_{p n}=Z / N\right)$

* Introduction
* Previous results
* Model
* Nuclear matter
\& Distributions
* EMCs
* PW ratio
*PV DIS
* Summary

- In-medium distributions softer than free ones: Binding effect on quark level.
- For $N>Z$, u-quarks feel additional binding (symmetry energy!) \Rightarrow larger medium effects for u-quarks in neutron rich matter.

EMC in nuclear matter: Dependence on Z / N

* Introduction
* Previous results
* Model
* Nuclear matter
* Distributions
* EMCs
* PW ratio
*PV DIS
* Summary

- Case $N>Z$: When matter becomes neutron-rich, medium-modification of u-quarks increases, but their number decreases \Rightarrow EMC effect becomes more pronounced as Z / N decreases from 1 to 0.6 , but for $Z / N<0.6$ the EMC effect becomes smaller because d-quarks begin to dominate.
- Case $N<Z$: When matter becomes proton-rich, medium modification of u-quarks decreases and their number increases \Rightarrow EMC effect becomes smaller.

Simple estimate of the isospin dependence

Make this argument a bit more quantitative:

- Assume: EMC effect \propto binding energy of quarks (E_{u}, E_{d}) weighted by their numbers and squared charges:

$$
\begin{aligned}
& F(\beta) \equiv \text { const } \times\left(4 N_{u} E_{u}+N_{d} E_{d}\right) \text {, where } \\
& \beta=(N-Z) / A \text {. } \\
& \text { - Use } E_{q}=M_{0}-\mu_{q} \text {, where } M_{0}=400 \mathrm{MeV} \text {, and the }
\end{aligned}
$$ chemical potentials follow from energy density as:

$$
\begin{aligned}
& \mu_{d(u)}=\frac{1}{3} \bar{M}_{N} \pm 2 \beta a_{4}, \text { where } \bar{M}_{N}=(940-15) \mathrm{MeV} \\
& a_{4}=30 \mathrm{MeV} .
\end{aligned}
$$

Note: Maximum at $\beta=0.44$ ($Z / N=0.4$).

Paschos-Wolfenstein Ratio (1)

In 2002, the NuTeV collaboration measured the ratio

$$
R=\frac{\sigma(\nu \mathrm{Fe} \rightarrow \nu \mathrm{X})-\sigma(\bar{\nu} \mathrm{Fe} \rightarrow \bar{\nu} \mathrm{X})}{\sigma\left(\nu \mathrm{Fe} \rightarrow \mu^{-} \mathrm{X}\right)-\sigma\left(\bar{\nu} \mathrm{Fe} \rightarrow \mu^{+} \mathrm{X}\right)}=\frac{\mathrm{NC}}{\mathrm{CC}}
$$

(All cross sections integrated over Bjorken- x and $y=q_{0} / E$, $Q^{2} \simeq 20 \mathrm{GeV}^{2}$.) In terms of nuclear valence quark distributions,

$$
R=\frac{\int \mathrm{d} x_{A} x_{A}\left(\alpha u_{A}\left(x_{A}\right)+\beta d_{A}\left(x_{A}\right)\right)}{\int \mathrm{d} x_{A} x_{A}\left(d_{A}\left(x_{A}\right)-\frac{1}{3} u_{A}\left(x_{A}\right)\right)}
$$

where $\alpha=\frac{2}{3}\left(\frac{1}{4}-\frac{2}{3} \sin ^{2} \Theta_{W}\right), \beta=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{3} \sin ^{2} \Theta_{W}\right)$.
For small isospin asymmetry,

$$
R=R_{0}+\left(1-\frac{7}{3} \sin ^{2} \Theta_{W}\right) \frac{f_{-}}{f_{+}} \equiv R_{0}+\delta R
$$

where $R_{0}=\frac{1}{2}-\sin ^{2} \Theta_{W}, \quad f_{ \pm}=\int \mathrm{d} x_{A} x_{A}\left(u_{A} \pm d_{A}\right)$.

Paschos-Wolfenstein Ratio (2)

- NuTeV estimated f_{-} / f_{+}by using "free" parton
* Introduction
* Previous results
* Model
* Nuclear matter
* Distributions
* EMCs
*PW ratio
*PV DIS
* Summary distributions $\left(q_{A f}=Z q_{p f}+N q_{n f}, q=u, d\right)$, and extracted $\sin ^{2} \Theta_{W}$. Their result was $\sin ^{2} \Theta_{W}=0.2277$, which is different from Standard Model value $\sin ^{2} \Theta_{W}=0.2227$.
(\Rightarrow "NuTeV anomaly": $R-\delta_{f} R \neq \frac{1}{2}-\sin ^{2} \Theta_{W}$.)
- However: Use the Standard Model value of $\sin ^{2} \Theta_{W}$ ($\Rightarrow R_{0}=0.2773$), but take into account medium ("med") and charge symmetry breaking ("csb") corrections: $\delta R=\delta_{f} R+\delta_{\text {med }} R+\delta_{\text {csb }} R$. Then we get for $R-\delta_{f} R=R_{0}+\delta_{\mathrm{med}} R+\delta_{\mathrm{csb}} R:$

free	+ med	+ csb *	NuTeV
0.2773	0.2741	0.2724	0.2723

* Arising from $m_{d}>m_{u}$, from: J.T. Londergan, Eur. Phys. J. A 32 (2007) 415.
- Result: Measured PW ratio is consistent with the Standard Model value of $\sin ^{2} \Theta_{W}$: There is no "anomaly".

Parity - violating (PV) EMC effect (1)

* Introduction
* Previous results
* Model
* Nuclear matter
* Distributions
* EMCs
* PW ratio
\&PV DIS
* Summary

Compare parton model expressions for usual EMC ratio and PV EMC ratio ($\gamma-Z$ interference effect):

$$
\begin{aligned}
R^{\gamma} & =\frac{F_{2 A}}{F_{2 A, \text { naive }}}=\frac{4 u_{A}+d_{A}}{4 u_{A f}+d_{A f}} \\
R^{\gamma Z} & =\frac{F_{2 A}^{\gamma Z}}{F_{2 A, \text { naive }}^{\gamma Z}}=\frac{1.15 u_{A}+d_{A}}{1.15 u_{A f}+d_{A f}}
\end{aligned}
$$

(Remember: $q_{A f}=Z q_{p f}+N q_{n f}, \quad q=u, d$.)

- For $N=Z$ and Coulomb neglected:

$$
u_{A}=d_{A} \Rightarrow R^{\gamma Z}=R^{\gamma} .
$$

- For $N>Z: u_{A}<d_{A}$, but u_{A} has stronger medium modifications because of additional binding from symmetry energy. (Remember: This was the reason why usual EMC effect increases as Z / N decreases from 1 to 0.6.)
- The ratio $R^{\gamma Z}$ is less dominated by u quarks $\Rightarrow \mathrm{PV}$ EMC effect will decrease as Z / N decreases.
F_{2}^{γ} and $F_{2}^{\gamma Z} \quad\left(r_{p n}=Z / N\right)$

$$
R^{\gamma}=\frac{4 u_{A}+d_{A}}{4 u_{A f}+d_{A f}}, \quad R^{\gamma Z}=\frac{1.15 u_{A}+d_{A}}{1.15 u_{A f}+d_{A f}} .
$$

PV DIS a_{1} ratios

* Introduction
* Previous results
* Model
* Nuclear matter
* Distributions
* EMCs
* PW ratio
\&PV DIS
* Summary

Single-spin asymmetry (arising from vector part of quark current) in PV DIS is proportional to:

$$
\begin{aligned}
a_{1} & \equiv \frac{F_{2}^{\gamma Z}}{F_{2}^{\gamma}} \simeq 2.11 \frac{1.15 u_{A}(x)+d_{A}(x)}{4 u_{A}(x)+d_{A}(x)} \\
\Rightarrow \frac{a_{1}}{a_{1, \text { naive }}} & =\frac{R^{\gamma Z}}{R^{\gamma}}>1 .
\end{aligned}
$$

This ratio is expected to increase with increasing isospin asymmetry.

Summary

* Introduction
* Previous results
* Model
* Nuclear matter
* Distributions
* EMCs
* PW ratio
*PV DIS
* Summary

For nuclear systems with neutron excess, the symmetry energy leads to additional attraction (repulsion) for up (down) quarks. This gives rise to interesting new medium modifications:

- EMC effect increases with increasing isospin asymmetry (in the range $0.6<\frac{Z}{N}<1$).
- "NuTeV anomaly" (Paschos-Wolfenstein ratio for $\nu-A$ DIS) is no longer an anomaly: The experimental PW ratio can be explained by nuclear effects arising from neutron excess, and charge symmetry breaking effects.
- Parity violating EMC effect is predicted to be different from the usual EMC effect. Single-spin asymmetries are expected to increase with increasing isospin asymmetry.

