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● Effective chiral quark theories are powerful tools to
describe quark distributions and structure functions of
nucleons.

● Nuclear EMC effect showed: Nucleon properties are
modified in the medium ⇒ Use chiral quark theories to
assess also medium modifications.

● Our earlier work: Interesting results and predictions for
the unpolarized and polarized EMC ratios for N ≃ Z
nuclei:

R(x) =
F2A(xA)

ZF2p(x) +NF2n(x)

NR,no−medium
−→ 1

RH
s (x) =

gH
1A(xA)

PH
p g1p(x) + PH

n g1n(x)

NR,no−medium
−→ 1

Here xA = A Q2

2MAν
= x

MN
MA/A

≡ xMN /MN , and H = Jz is the helicity of nucleus A.

Here: We point out some interesting effects for N 6= Z!
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● Spin independent case: Nuclear vector potential leads to rescaling of Bjorken x, and plays the
essential role!

● Spin dependent case: Nuclear scalar potential (smaller quark mass) leads to quenching of quark spin
sum and enhancement of quark orbital angular momentum!
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Transverse EMC effect

I. Sick and D. Day, Phys. Lett. B 274, 16 (1992).

“Transverse EMC ratio” is defined here by replacing ∆q(x) → ∆T q(x) in the spin-dependent EMC ratio.
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● Effective quark theory for single nucleon:
Nambu-Jona-Lasinio (NJL) model, quark-diquark
description based on the Faddeev method.
(see: N. Ishii et al, NPA 587 (1995) 617.)

We include scalar (0+) and axial vector (1+) diquarks.

● Quark distributions (qN (x),∆qN (x),∆T qN (x)) in the
nucleon calculated from Feynman diagrams

p p

k k

p-k

+
p p

q q

k k

p-q

q-k

where X =
(

γ+, γ+γ5, γ
+γ1γ5

)

δ(x− k−
p−

).
Good agreement with empirical parametrizations!
Scalar and vector nuclear mean fields can be included in
the quark propagators!
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● Nuclear matter equation of state constructed in mean
field approximation. Mean self consistent scalar and vector fields
couple to the quarks in the nucleon. For example, the energy density for N=Z
becomes

E(M) = Evac(M) + γN

Z pF d3k

(2π)3

q

MN (M)2 + k2 + Eω

MN (M) . . . nucleon mass vs. constituent quark mass.
● For N 6= Z, an isovector vector field (ρ0) is included.

● After minimization, one obtains all masses as functions
of density ⇒ Calculate quark distributions in the
nucleon, nucleon distributions in medium (s. diagram
below), and (by convolution) quark distributions in
medium.

N

p

Operator insertion (spin indep. case): γ
+

δ

 

yA −

ǫp + p3

MN

!

, where ǫp = nucleon energy,

MN = mass per nucleon.
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● In-medium distributions softer than free ones: Binding effect on quark level.

● For N > Z, u-quarks feel additional binding (symmetry energy!) ⇒ larger
medium effects for u-quarks in neutron rich matter.
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● Case N > Z: When matter becomes neutron-rich, medium-modification of
u-quarks increases, but their number decreases ⇒ EMC effect becomes
more pronounced as Z/N decreases from 1 to 0.6, but for Z/N < 0.6 the
EMC effect becomes smaller because d-quarks begin to dominate.

● Case N < Z: When matter becomes proton-rich, medium modification of
u-quarks decreases and their number increases ⇒ EMC effect becomes
smaller.
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Make this argument a bit more quantitative:
● Assume: EMC effect ∝ binding energy of quarks

(Eu, Ed) weighted by their numbers and squared
charges:
F (β) ≡ const × (4NuEu +NdEd), where
β = (N − Z)/A.

● Use Eq = M0 − µq, where M0 = 400 MeV, and the
chemical potentials follow from energy density as:

µd(u) =
1

3
MN ± 2βa4, where MN = (940 − 15) MeV,

a4 = 30 MeV.

Note: Maximum at β = 0.44 ( Z/N = 0.4).
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In 2002, the NuTeV collaboration measured the ratio

R =
σ (νFe → νX) − σ (νFe → νX)

σ (νFe → µ−X) − σ (νFe → µ+X)
=

NC

CC

(All cross sections integrated over Bjorken-x and y = q0/E,
Q2 ≃ 20 GeV2.) In terms of nuclear valence quark
distributions,

R =

∫

dxA xA (αuA(xA) + βdA(xA))
∫

dxA xA

(

dA(xA) − 1
3uA(xA)

)

where α = 2
3

(

1
4 − 2

3 sin2 ΘW

)

, β = 2
3

(

1
4 − 1

3 sin2 ΘW

)

.
For small isospin asymmetry,

R = R0 +

(

1 −
7

3
sin2 ΘW

)

f−
f+

≡ R0 + δR

where R0 = 1
2 − sin2 ΘW , f± =

∫

dxAxA (uA ± dA).
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● NuTeV estimated f−/f+ by using “free” parton
distributions (qAf = Zqpf +Nqnf , q = u, d), and
extracted sin2 ΘW . Their result was sin2 ΘW = 0.2277,
which is different from Standard Model value
sin2 ΘW = 0.2227.
(⇒ “NuTeV anomaly”: R− δfR 6= 1

2 − sin2 ΘW .)

● However: Use the Standard Model value of sin2 ΘW

(⇒ R0 = 0.2773), but take into account medium (“med”)
and charge symmetry breaking (“csb”) corrections:
δR = δfR+ δmedR+ δcsbR. Then we get for
R− δfR = R0 + δmedR+ δcsbR:

free + med + csb∗ NuTeV
0.2773 0.2741 0.2724 0.2723

∗ Arising from md > mu, from: J.T. Londergan, Eur. Phys. J. A 32 (2007) 415.

● Result: Measured PW ratio is consistent with the
Standard Model value of sin2 ΘW : There is no
“anomaly”.
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Compare parton model expressions for usual EMC ratio and
PV EMC ratio (γ − Z interference effect):

Rγ =
F2A

F2A,naive
=

4uA + dA

4uAf + dAf

RγZ =
F γZ

2A

F γZ
2A,naive

=
1.15uA + dA

1.15uAf + dAf

(Remember: qAf = Zqpf + Nqnf , q = u, d.)

● For N = Z and Coulomb neglected:
uA = dA ⇒ RγZ = Rγ .

● For N > Z: uA < dA, but uA has stronger medium
modifications because of additional binding from
symmetry energy. (Remember: This was the reason why
usual EMC effect increases as Z/N decreases from 1 to 0.6.)

● The ratio RγZ is less dominated by u quarks ⇒ PV EMC
effect will decrease as Z/N decreases.
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Single-spin asymmetry (arising from vector part of quark
current) in PV DIS is proportional to:

a1 ≡
F γZ

2

F γ
2

≃ 2.11
1.15uA(x) + dA(x)

4uA(x) + dA(x)

⇒
a1

a1,naive
=

RγZ

Rγ
> 1 .

This ratio is expected to increase with increasing isospin
asymmetry.
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For nuclear systems with neutron excess, the symmetry
energy leads to additional attraction (repulsion) for up (down)
quarks. This gives rise to interesting new medium
modifications:

● EMC effect increases with increasing isospin asymmetry
(in the range 0.6 < Z

N < 1).

● “NuTeV anomaly” (Paschos-Wolfenstein ratio for ν −A
DIS) is no longer an anomaly: The experimental PW
ratio can be explained by nuclear effects arising from
neutron excess, and charge symmetry breaking effects.

● Parity violating EMC effect is predicted to be different
from the usual EMC effect. Single-spin asymmetries are
expected to increase with increasing isospin asymmetry.
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