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Talk Agenda

Saturation Model in the Small-x Region
□

 
Saturation scale as a function of x

□
 

McLerran-Venugopalan
 

(MV) model
Particle Production in a Dilute-Dense Collision
□

 
One-gluon production

□
 

Two-gluon production
Particle Production in a Dense-Dense Collision
□

 
Gluon distribution Gluon production
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HERA  (ep
 

collider) –
 

x Evolution

Quantum Evolution of PDFs
As x

 
goes smaller

 than ~ 10−2

gluon
 

is dominant.

! 20×
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Gluon increases with a fixed transverse area

Graphically

Going to Smaller x with Fixed Q2

small-x Dense Gluon Matter

BFKL
Iancu
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Q2
 Dependence

Quantum Evolution of PDFs
As Q2

 
goes larger

gluon grows slowly.

40/1×

3~2×

Dilute!
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Going to Larger Q2
 with Fixed x

Gluon slowly increases with a decreasing area

Graphically, in the same way,

large Q Dilute Gluon Matter
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Saturation

Gluons eventually cover the transverse area
 at small x

 
and small Q2

Condition for saturation:
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How can we expect the saturation effect in reality?



January 2009 at KEK

Scaling Behavior

Dipole Cross Section in a Saturation Model

Stasto-Golec-Biernat-Kwiecinski
 

Plot

Called the "Geometric Scaling"
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Iancu-Itakura-McLerran, Iancu-Italura-Munier
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Scaling Behavior Extended

Let us put some numbers...

Scaling is consistent with pQCD

BFKL (dilute regime) can fix the parameters
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Dipole Amplitude

Iancu-Itakura-McLerran

No need to realize saturation! 

Au)for  8.5(~3/1A×
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Message

There are some examples in which
 a saturation-model description can work well

 even when saturation is not yet reached.
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Saturation Model

Parametrized
 

by a scaling variable
□

 
Qs

 

(x) encompasses the scaling property.
□

 
Wave-function is characterized by Qs

 

(x)

McLerran-Venugopalan
 

model
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Scattering
 

Problem

Scattering Amplitude in the Eikonal
 

Approx.
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Stationary-Point Approximation

Dipole Scattering Amplitude
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Physical Observable

Dipole scattering amplitude

In general
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Classical Solution
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One-Gluon Production in pA

LSZ reduction formula

In LC gauge

W
Final expression is given in terms of

which is calculable as a function of gμ
(higher-twist)

Appp WW ϕϕρρ →→      

Dumitru-McLerran,  Blaizot-Gelis-Venugopalan
perturbation

Kt

 

-factorization
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Two-Gluon Production in pA

LSZ reduction formula

In LC gauge

HIC (AA)

Rapidity
 dependent
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Two-Gluon Production in pA

Diagrams for the Connected Part

Fukushima-Hidaka

W

W
W
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Dense-Dense (AA) Collision

Glasma = Glass + Plasma
+x−x
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Quark-Gluon Plasma

How to compute gluon production?
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Intuitive Picture at τ =0

Longitudinal Fields between Nucleus Sheets
Transverse Fields

Initial CGC Fields
Transverse Fields

Lappi-McLerran
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Gaussian Average at τ 0

Energy density

Momentum decomposition

UV div.
 (unphysical)

IR div.
 (physical)

Expressed by K1

 

(x)
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Spectral Intensity

Numerical Results

2

1~
tk

Physical choice is
a

 
=10 ~ 40 at RHIC Perturbative

 
tail
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UV Dominance

UV Contribution Dominance
UV divergences come from derivatives.
Time evolution from derivative terms in EoM.

Decreasing functions
 as k goes larger.

UV div is tamed by
 expansion.

Kovchegov
c.f. Fujii-Itakura
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Gluon Distribution

Energy and Gluon Distribution (Multiplicity)

Result

Fourier decomposition

c.f. Gunion-Bertsch
Consistent with the LSZ reduction formula!  (Gelis-Venugopalan)

Fujii-Fukushima-
 -Hidaka
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Well-Defined Asymptotics

Numerical Results (~dN/dη)
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Numerics

Results (with non-linear corrections) for Qs2 = 1~2GeV2

Consistent with the empirical value at a
 

=25 and Qs2
 

=1GeV2

Hadron multiplicity at mid rapidity ~ 1100
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Summary

Saturation models enable us to carry out 
economical resummation

 
of multiple scattering 

with dense color source.
Gluon multiplicity can be computed.
□

 
One-gluon production in pA

□
 

Two-gluon production in pA, ...etc
Gluon multiplicy

 
in the expanding geometry in 

AA can be computed.
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