格子QCDによる核子の一般化形状因子と クォークの角運動量の解析

Munehisa Ohtani (Kyorin Univ.)

for UKQCD-QCDSF Collab.

- Introduction
- Form Factors and Physical Quantities
- Numerical results of lattice simulation
 - Axial FFs and quark spin
 - Moments of GPD(vector) and total angular momentum
- Summary

10 Jan. 核子構造研究の新展開2009@ KEK

Introduction

Generalized Parton Distributions of Nucleon

momentum transfer squared: $t = (\varDelta \equiv P' - P)^2$ longitudinal mt. transfer: $\xi = -n \cdot \varDelta / 2$

$$\begin{split} \int &\frac{d\eta}{4\pi} e^{i\eta x} \langle P' | \bar{q}(-\frac{\eta n}{2}) \gamma^{\mu} \begin{bmatrix} 1\\ \gamma_{5} \end{bmatrix} \mathcal{U}q(\frac{\eta n}{2}) | P \rangle = \bar{N}(P') \bigg(\gamma^{\mu} \begin{bmatrix} H(x,\xi,t)\\ \gamma_{5}\tilde{H}(x,\xi,t) \end{bmatrix} + i \frac{\sigma^{\mu\nu}\Delta_{\nu}}{2M} \begin{bmatrix} E(x,\xi,t)\\ \gamma_{5}\tilde{E}(x,\xi,t) \end{bmatrix} \bigg) N(P) \\ \int &\frac{d\eta}{4\pi} e^{i\eta x} \langle P' | \bar{q}(-\frac{\eta n}{2}) \sigma^{\mu\nu}\mathcal{U}q(\frac{\eta n}{2}) | P \rangle = \bar{N}(P') \bigg(i \sigma^{\mu\nu} H_{\mathrm{T}}(x,\xi,t) + \frac{\bar{P}^{[\mu}\Delta^{\nu]}}{M^{2}} \tilde{H}_{\mathrm{T}}(x,\xi,t) \\ &+ \frac{\gamma^{[\mu}\Delta^{\nu]}}{2M} E_{\mathrm{T}}(x,\xi,t) + \frac{\gamma^{[\mu}\bar{P}^{\nu]}}{M} \tilde{E}_{\mathrm{T}}(x,\xi,t) \bigg) N(P) \end{split}$$

GPDs encode important information on Nucleon structure !

Generalized Parton Distributions

Angular momentum 🖹 X.Ji, PRL78(1997)

 $\begin{cases} \langle J \rangle^q = \frac{1}{2} \int dx \ x \ (H(x, \, \xi, \, 0) + E(x, \, \xi, \, 0)) \ ^{u+d} \equiv \frac{1}{2} \left(A_{20} + B_{20} \right) \\ \langle s \rangle^q = \frac{1}{2} \int dx \ \widetilde{H}(x, \, \xi, \, 0)^{u+d} \equiv \frac{1}{2} \widetilde{A}_{10} \end{cases}$

Moments of GPD: Generalized Form Factors

🖹 LHPC, PRD**68**(2003)034505

Simulation parameters

β	K	volume	<i>a</i> [fm]	m_{π} [GeV]
5.20	0.13420	$16^{3} \times 32$	0.0856	1.347
	0.13500	//		0.956
	0.13550	//		0.670
5.25	0.13460	11	0.0794	1.225
0.20	0.13520	//		0.949
	0.13575	$24^{3} \times 48$		0.635
	0.13600	//		0.457
5.29	0.13400	$16^{3} \times 32$	0.0753	1.511
	0.13500	//		1.102
	0.13550	$24^{3} \times 48$		0.857
	0.13590	//		0.629
	0.13620	// //		0.414
	0.13632	$32^{3} \times 64$		0.279
5.40	0.13500	$24^{3} \times 48$	0.0672	1.183
	0.13560	<i></i>		0.917
	0.13610	// //		0.648
	0.13625	 //		0.559
	0.13640			0.451
	0.13660	$32^{3} \times 64$		0.255

• N_f=2 Wilson fermions w/ clover improvement

- # of config: 400-2200 for each(β, κ)
- Physical unit translated by r_0^{c}/a
- O(a) improved operators
- non-perturbative renormalization into $\overline{MS} @ \mu = 2 \text{ GeV}$

t dependence of Axial Form Factor

t dependence of the 2nd Moments

 $A_{20}^{u-d}(t), B_{20}^{u-d}(t) \text{ and } C_{20}^{u-d}(t) \text{ with } \beta = 5.29, \kappa = 1.3632$

Generalized Form Factors in Chiral Perturbation

M.Dorati, T.A.Gail and T.R.Hemmert, nucl-th/0703073

$$B_{2,0}^{v}(t) = (b_{2,0}^{v} + \hat{\delta}_{B} m_{\pi}^{2} + \hat{\delta}_{B}^{t} t) \frac{M_{N}(m_{\pi})}{M_{0}} + \frac{a_{2,0}^{v} g_{A}^{2} M_{0}^{2}}{48\pi^{2} F_{\pi}^{2}} G(t)$$
$$B_{2,0}^{s}(t) = (b_{2,0}^{s} + \hat{B}_{33} m_{\pi}^{2} + \hat{B}_{34} t) \frac{M_{N}(m_{\pi})}{M_{0}} - \frac{a_{2,0}^{s} g_{A}^{2} M_{0}^{2}}{16\pi^{2} F_{\pi}^{2}} G(t)$$

$$G(t) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{du}{\tilde{M}^8} \left[\left(M_0^2 - \tilde{M}^2 \right) \tilde{M}^6 + 9m_\pi^2 M_0^2 \tilde{M}^4 - 6m_\pi^4 M_0^2 \tilde{M}^2 + 6m_\pi^2 M_0^2 \left(m_\pi^4 - 3m_\pi^2 \tilde{M}^2 + \tilde{M}^4 \right) \log \frac{m_\pi}{\tilde{M}} - \frac{6m_\pi^3 M_0^2}{\sqrt{4\tilde{M}^2 - m_\pi^2}} \left(m_\pi^4 - 5m_\pi^2 \tilde{M}^2 + 5\tilde{M}^4 \right) \arccos \frac{m_\pi}{2\tilde{M}} \right]$$

Dipole fit and forward limit of $B_{20}^{u,d}(t)$

 $B_{20}{}^{q}(t) \xrightarrow{t \to 0} 2\langle J \rangle^{q} - \langle x \rangle^{q}$

*B*₂₀^{*u+d}(t) and covariantized Baryon ChPT*</sup>

*B*₂₀^{*u-d}(t) and covariantized Baryon ChPT*</sup>

Chiral extrapolation of J^u, J^d

decomposition of quark angular momentum

Twisted boundary condition

$$q(x_k + L) = \mathbf{e}^{\mathbf{i}\theta_k} q(x_k) \quad || = \mathbf{e}^{\mathbf{i}\theta_k} -t = (\Delta E)^2 - \left[(\mathbf{p}_f + \mathbf{\theta}_f / L) - (\mathbf{p}_i + \mathbf{\theta}_i / L) \right]^2$$

$$\overset{\cap}{2\pi/L} \times Z$$

Summary and outlook

•Generaized Parton Distribution

 \Rightarrow spin content, transverse quark distribution, Form factors,...

- accessible experimentaly via DVCS
- theoretical calculations in CQSM, Skyrme model,...
- moments of GPD in lattice QCD
 - A_{20}^{u-d} and B_{20}^{u+d} have strong "chiral log" corrections.
 - Chiral extrapolation of $A_{20}(0) \& B_{20}(0)$ via BChPT ^{nucl-th/0703073} leads

$\langle J \rangle^{u} \sim 0.226 \pm 0.009$	$\langle J \rangle^{u+d} \sim 0.222 \pm 0.014$	
$\langle J \rangle^{d} \sim -0.005 \pm 0.009$	$\langle s \rangle^{u+d} \sim 0.201 \pm 0.024$	$(@ m_{\pi} = .14 \text{GeV})$
	$\langle L \rangle^{u+d} \sim 0.021 \pm 0.028$	

- lighter m_{π} , larger volume (for $t \rightarrow 0$), Finite size corrections, Continuum limit, disconnected diagram, $N_{\rm F} = 2+1...$