第7回J-PARCハドロンサロン KEK東海、2013年3月1日

中性子過剰核 ⁶^AH, ⁵^{AA}H における YN, YNN, YY, YYN 有効相互作用

赤石 義紀 理研、日大理工

Hyper-heavy hydrogen ${}^{6}_{\Lambda}$ H

in collaboration with

Theingi & Khin Swe Myint

arXiv:1211.5719 [nucl-th]

最近話題になっている⁶_ΛHの束縛のメカニズムを追究することによって、中性子過剰核特有の3 体力効果を明らかにする。この効果は、Λ とΣ が相互に転移する平均場を用いて記述できる。こ の新しい型の平均場は、中性子過剰のハイパー核に通常のハイパー核にはない際立った特質を もたらす。⁶_ΛH で当面する課題について議論する。

Pions from stopped K⁻ on ⁶Li

M. Agnello et al., Nucl. Phys. A 881 (2012) 269

Evidence for heavy hyperhydrogen ⁶_{\lambda}**H**

M. Agnello et al., Phys. Rev. Lett. 108 (2012) 042501

 π^{\pm} in coincidence $(p_{\pi^+} \text{ left}, p_{\pi^-} \text{ right}), T(\pi^+) + T(\pi^-) = 202 - 204 \text{ MeV}$

 p_{π^+} vs. p_{π^-} for $T(\pi^+) + T(\pi^-) = 202 - 204$, 200 - 206 MeV (left, right)

<u>Candidates of ${}^{6}_{\Lambda}$ H</u>

T _{sum} (MeV)	p_{π^+} (MeV/c)	p_{π^-} (MeV/c)	$M(^{6}_{\Lambda} \mathrm{H})_{\mathrm{prod.}}$ (MeV)	$M(^{6}_{\Lambda} \mathrm{H})_{\mathrm{decay}} (\mathrm{MeV})$
202.6 ± 1.3	251.3 ± 1.1	135.1 ± 1.2	5802.33 ± 0.96	5801.41 ± 0.84
202.7 ± 1.3	250.1 ± 1.1	136.9 ± 1.2	5803.45 ± 0.96	5802.73 ± 0.84
202.1 ± 1.3	252.8 ± 1.1	121.2 ± 1.2	5700.07 ± 0.96	5708.66 ± 0.84

 ${}^{4}_{\Lambda}$ H+2n threshold: 5801.71 MeV

IL NUOVO CIMENTO

RIVISTA INTERNAZIONALE

ORGANO DELLA SOCIETÀ ITALIANA DI FISICA SOTTO GLI AUSPICI DEL CONSIGLIO NAZIONALE DELLE RICERCHE

E DEL COMITATO NAZIONALE PER L'ENERGIA NUCLEARE

Vol. XXX, N. 2		Serie	decima	16	Ottobre	1963
				 	-	

Some Possibilities for Unusual Light Hypernuclei (*).

R. H. DALITZ and R. LEVI SETTI

The « Enrico Fermi » Institute for Nuclear Studies Department of Physics, The University of Chicago - Chicago, Ill.

A = 6. Strong experimental evidence for the existence of particle-stable ⁵H has recently been reported by NEFKENS (⁶). The probable existence of this nucleus had previously been pointed out on theoretical grounds by BLAN-CHARD and WINTER (¹⁰) and by AJZENBERG-SELOVE and LAURITSEN (¹¹), with an estimate of -0.35 MeV for its energy relative to ³H - 2n. It is therefore natural to expect the system (⁴H_A+2n) = ⁶H_A to be bound in an $I = \frac{3}{2}$ state, with B_A value of about 4.2 MeV (*). This estimate corresponds to the value $B_A = 2.4$ MeV for ⁴H_A, with an additional 1.8 MeV estimated as above for the additional attraction exerted on the two neutrons by the A-particle. This

(*) B. M. K. NEFKEN :: Phys. Rev. Lett., 10, 55 (1962).

(10) C. H. BLANCHARD and R. G. WINTER: Phys. Rev., 107, 774 (1957).

(11) F. AJZENBERG-SELOVE and T. LAURITSEN: Nucl. Phys., 11, 1 (1957).

3 candidate events of ${}^{6}_{\Lambda}H$

Λ separation energy

 \Rightarrow Dynamical model with coherent Λ - Σ coupling

<u>Coherent Λ - Σ coupling</u>

YN interaction weights from s-shell nucleons

Y. Akaishi, T. Harada, S. Shinmura and Khin Swe Myint, Phys. Rev. Lett. 84 (2000) 3539

Stochastic variational calculation of ${}^{5}_{\Lambda}$ He

H. Nemura, Y. Akaishi & Y. Suzuki, Phys. Rev. Lett. <u>89</u> (2002) 142504

The first successful *ab initio* **5**-body calculation including Σ degrees of freedom

J.A. Carlson, AIP Conf. Proc. <u>224</u> (1991) 198 SC89: unbound

Sander Myint Oo

Coupling scheme

<u>YN interaction weights in ${}^{6}_{\Lambda}$ H(0⁺)</u>

g for *p*-shell N is the sum of even & odd state effective interactions.

from s-shell nucleons

from *p*-shell neutrons

Program code swe3/LH6.f

Self-consistently determined

Matrix elements for s-shell hyperon:

$$\begin{split} \sum_{\substack{\phi_{2},\mu_{2}}} & \langle (a_{1}^{"} j_{1}\mu_{1}\phi_{1})(a_{2}^{"} j_{2}\mu_{2}\phi_{2}) | g | (a_{1}j_{1}\mu_{1}\phi_{1})(a_{2}j_{2}\mu_{2}\phi_{2}) - \text{exch.} \rangle \\ &= (2j_{2}+1)(2\ell_{2}+1)^{2} \sum_{\ell'=0}^{\ell_{2}} \sum_{\ell'=0}^{\ell_{2}} \left(\frac{M_{1}}{M_{1}+M_{2}} \right)^{\ell'+\ell'''} \sqrt{\binom{2\ell_{2}}{2\ell'}} \sum_{2\ell''} \sum_{n,n''} (2n+1)(2n''+1) \\ &\times \sum_{\kappa} \int_{0}^{\infty} dr r^{\ell'+\ell''+2} \exp\left(-(A_{12}''+A_{12}+c_{\kappa}^{2})r^{2}\right) \int_{0}^{\infty} dR R^{2\ell_{2}-\ell'-\ell''+2} \exp\left(-(a_{1}''+a_{2}''+a_{1}+a_{2})R^{2}\right) \\ &\times i^{n''} j_{n''}(ia_{12}''rR)i^{n} j_{n}(ia_{12}rR) \\ &\times \sum_{\ell} \left(\ell' n00[\ell'0](\ell'''n''00[\ell'0]) \sum_{\tilde{L}} \left(\ell_{2}-\ell' n00[\tilde{L}0](\ell_{2}-\ell'''n''00[\tilde{L}0]) \left\{ \begin{array}{c} n \ell' - \tilde{\ell} \\ \ell_{2} \tilde{L} \ell_{2}-\ell \end{array} \right\} \left(\int_{\ell_{2}}^{n} \ell'' - \tilde{\ell} \\ \ell_{2} \tilde{L} \ell_{2}-\ell \end{array} \right) \\ &\times \left[\sum_{\kappa=\ell_{2}} \frac{2K+1}{2} \left\{ j_{2}K \frac{1}{2} \\ 0 \frac{1}{2} \ell_{2} \right\}^{2} \sum_{J=\tilde{\ell}} (2J+1) \left\{ \begin{array}{c} \tilde{\ell} 0 J \\ K \tilde{L} \ell_{2} \end{array} \right\}^{2} \frac{1-(-)^{n-\ell'}}{2} \left\{ V_{\tilde{\ell},S=0}^{J,F=0}(\kappa) \right\} \\ &Y_{n \text{ and } Yp} + \cdots + V_{\tilde{\ell},S=1}^{J,F=1}(\kappa) \right\} \\ &Y_{n \text{ and } Yp} + \cdots + V_{\tilde{\ell},S=1}^{J,F=0}(\kappa) \\ &Y_{n \text{ and } Yp} + \cdots + V_{\tilde{\ell},S=1}^{J,F=0}(\kappa) \\ &Y_{n \text{ and } Yp} + \cdots + V_{\tilde{\ell},S=1}^{J,F=1}(\kappa) \\ &Y_{n \text{ and } Yp} + \cdots + V_{\tilde{\ell},S=1}^{J,F=0}(\kappa) \\ &Y_{n \text{ and } Yp} \\ &Y_{n \text{ and } Yp} + \cdots + V_{\tilde{\ell},S=1}^{J,F=0}(\kappa) \\ &Y_{n \text{ and } Yp} \\ &Y_{n \text{ and } Yp} + \cdots + V_{\tilde{\ell},S=1}^{J,F=0}(\kappa) \\ &Y_{n \text{ and } Yp} \\ \\ &Y_{n \text{ and } Yp} \\ &Y_{n \text{ and } Yp} \\ \\ \\ \\ &Y_{n \text{ a$$

NSC97f is used.

Dependence of coherent Λ - Σ coupling on ${}^{6}_{\Lambda}$ H size

0

-10

-20

-30

 $U_{\Lambda}^{(p)}$

´IJ_Σ(p)

 $U_{\Lambda}^{(s)}$

r (fm)

¹⁰B (π^-, K^+)¹⁰ Li spectrum

P.K. Saha et al. (T. Fukuda), Phys. Rev. Lett. <u>94</u> (2005) 052502

Relativistic mean field model

Baryons: *n*, *p*, *A*, Σ Mesons: σ , ρ , ω

For Λ and Σ^{0} $\left(p - \gamma^{0} g_{\Lambda \Lambda \omega} \omega_{0} - M_{\Lambda} + g_{\Lambda \Lambda \sigma} \sigma\right) \Lambda - \gamma^{0} g_{\Lambda \Lambda \omega} \omega_{0} \Sigma^{0} = 0$ $\left(p - \gamma^{0} g_{\Sigma \Sigma \omega} \omega_{0} - M_{\Sigma} + g_{\Sigma \Sigma \sigma} \sigma\right) \Sigma^{0} - \gamma^{0} g_{\Sigma \Sigma \omega} \omega_{0} \Lambda = 0$

$$m_{\sigma}^{2}\sigma = \sum g_{\mathsf{B}\mathsf{B}\sigma} \langle \overline{\mathsf{B}} \mathsf{B} \rangle$$

$$m_{\omega}^{2}\omega^{0} = \sum g_{\mathsf{B}\mathsf{B}\omega} \langle \overline{\mathsf{B}}\gamma^{0}\mathsf{B} \rangle$$

$$m_{\rho}^{2}\rho^{0} = \sum g_{\mathsf{B}\mathsf{B}\rho} \langle \overline{\mathsf{B}}\gamma^{0}\mathsf{B} \rangle + \left(g_{\Lambda\Sigma\rho} (\langle \overline{\Lambda}\gamma^{0}\Sigma \rangle \langle \overline{\Sigma}\gamma^{0}\Lambda \rangle)\right)$$

"Normal state of infinite matter"

Baryons in the medium carry the same quantum numbers in vacuum.

N.K. Glendenning, Astrophys. J. 293 (1985) 470.

Effective ΛΛ interaction in neutron-rich hypernuclei

in collaboration with

Aye Aye Min & Khin Swe Myint

二重ハイパー核 $5_{\Lambda\Lambda}$ Hを取り上げる。ここでのテーマは Γ AA有効相互作用は、 中性子物質中とN=Z核物質中で同じか?」である。中性子星中での YY 相互 作用を知るために、 $5_{\Lambda\Lambda}$ Hの実験データが欠かせないことを示す。

Thermal evolution of hyperon-mixed neutron stars

S. Tsuruta, J. Sadino, A. Kobelski, M.A. Teter, A.C. Liebmann, T. Takatsuka, K. Nomoto & H. Umeda, Astrophys. J. <u>691</u> (2009) 621

A. Gal, Invited Lecture at J-PARC, Tokai, on Feb. 9, 2012,

(neglecting K.S. Myint et al., Eur. Phys. J. A 16)

I.N. Filikhin, A. Gal, Nucl. Phys. A 707 (2002) 491 s-wave Faddeev calculations of $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He})$ vs. $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{5}\text{H}, {}_{\Lambda\Lambda}{}^{5}\text{He})$ $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) \equiv B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) - 2B_{\Lambda}({}_{\Lambda}{}^{5}\text{He})$ $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) \approx 1 \text{ MeV implies that } {}_{\Lambda\Lambda}{}^{5}\text{H \& } {}_{\Lambda\Lambda}{}^{5}\text{He} \text{ are also bound}$ ${}_{\Lambda\Lambda}{}^{5}\text{H \& } {}_{\Lambda\Lambda}{}^{5}\text{He} \text{ may mark the onset of } \Lambda\Lambda \text{ binding}$

Pauli Suppression Effect in ${}^{6}_{\Lambda\Lambda}$ He

$$\int \Delta V_{\text{Pauli}} = V_{\Lambda\Lambda,\Xi^{-p}} \frac{P_{\alpha}}{\Delta M} V_{\Xi^{-p},\Lambda\Lambda} + V_{\Lambda\Lambda,\Xi^{0}} n \frac{P_{\alpha}}{\Delta M} V_{\Xi^{0}n,\Lambda\Lambda}$$

$$\Delta M = M_{\Xi} + M_{N} - 2M_{\Lambda} + 2B_{\Lambda} \left({}^{5}_{\Lambda} \text{He} \right) = 32.0 \text{ MeV}$$
$$P_{\alpha} = \left| \text{N}(0\text{s}) \right\rangle_{\alpha \alpha} \left\langle \text{N}(0\text{s}) \right|$$

The Pauli suppression effect must be included in fitting the empirical value of $\Delta B_{\Lambda\Lambda} \left({}^{6}_{\Lambda\Lambda} \text{He} \right)$. Khin Swe Myint, S. Shinmura & Y. Akaishi, Eur. Phys. J. A 16 (2003) 21

$\Delta B_{\Lambda\Lambda}(^{5}_{\Lambda\Lambda}H)$ vs. $\Delta B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}He)$

Observations of ${}_{\Lambda\Lambda}{}^{5}He$ and ${}_{\Lambda\Lambda}{}^{5}H$ are significant to deduce the coupling strength.

Fully Coupled Channel Approach to Doubly Strange s-Shell Hypernuclei

H. Nemura,^{1,*} S. Shinmura,² Y. Akaishi,³ and Khin Swe Myint⁴

$\Lambda\Lambda - \mathbf{p}\Xi^{-} - \mathbf{n}\Xi^{0} - \Lambda\Sigma^{0} - \Sigma^{+}\Sigma^{-} - \Sigma^{0}\Sigma^{0}$ couplings	$\Lambda^{T=0}$ -) <u></u> ∃ n <u></u> ≡⁰ -	$\Lambda^{T=1}_{\Sigma^0} - \Sigma^+ \Sigma^-$	- Σ <mark>0</mark> Σ0	couplings
--	-------------------	----------------------------	--	-----------------------	-----------

YY	$B_{\Lambda\Lambda}(^{4}_{\Lambda\Lambda}{ m H})$	$B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}{ m H})$	$B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}{ m He})$	$B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}{ m He})$
ND _S	0.107	4.05	3.96	7.94
mND _S	0.058	3.75	3.66	7.54
NF _S	0.128	3.84	3.77	7.53
Expt.				$7.25 \pm 0.19^{+0.18}_{-0.11}$

$\Delta B_{\Lambda\Lambda}(^{5}_{\Lambda\Lambda}H)$ vs. $\Delta B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}He)$

$$\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} - 2 \overline{B}_{\Lambda}^{cal}$$

$$\overline{B}_{\Lambda}^{cal}$$

 $\overline{B}_{\Lambda} = \frac{3B_{\Lambda}(1^+) + B_{\Lambda}(0^+)}{4}$ for ${}^4_{\Lambda}$ H, ${}^4_{\Lambda}$ He

mNDs	B _{^^}	$\Delta B_{\Lambda\Lambda}$
5∧ H	3.75	<u>1.27</u>
₅ ∧∧He	3.66	1.24
⁶ ∧∧ He	7.54	<u>1.18</u>

(unit in MeV)

1.27/1.18=1.08

$$\approx \left\langle \phi_{\wedge\wedge}^{(\mathsf{t})} \left| \boldsymbol{V}_{\wedge\wedge}^{(\mathsf{t})} \right| \phi_{\wedge\wedge}^{(\mathsf{t})} \right\rangle / \left\langle \phi_{\wedge\wedge}^{(\alpha)} \left| \boldsymbol{V}_{\wedge\wedge}^{(\alpha)} \right| \phi_{\wedge\wedge}^{(\alpha)} \right\rangle$$

This is not a fair comparison of effective interactions, because $\phi_{\Lambda\Lambda}^{(\alpha)}$ is more compact than $\phi_{\Lambda\Lambda}^{(t)}$.

NFs	$B_{\Lambda\Lambda}$	$\Delta B_{\Lambda\Lambda}$
5 ∧∧ H	3.84	<u>1.36</u>
₅ ∧∧He	3.77	1.35
⁶ ^^ Не	7.53	<u>1.17</u>

1.36/1.17=1.16

$\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}H)$ is larger than $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}He)$!

⁽unit in MeV)

<u>ATMS calculation of ${}^{5}_{\Lambda\Lambda}$ H and ${}^{6}_{\Lambda\Lambda}$ He</u>

DATA for ATMS program

by Aye Aye Min

Double-A hypernuclei	Instead of 260.0 (for ZVCE)	Total energy		Note
5LLH	249.56	-0.38400D+01 (UPPER)	-0.38542D+01 (EIGEN)	NNN = 101 NT = 1000000 ICORE = 1

 $V_{\Lambda\Lambda}^{(t)}(r) = 5000.0 \exp(-(r/0.355)^2) - 249.6 \exp(-(r/0.855)^2)$ in $_{\Lambda\Lambda}^{5}$ H

Double-A hypernuclei	Instead of 240.0 (for ZVCE)	Total energy		Note
6LLHe	225.61	-0.75301D+01 (UPPER)	-0.75408D+01 (EIGEN)	NNN = 101 NT = 1000000 ICORE = 2

 $V_{\Lambda\Lambda}^{(\alpha)}(r) = 5000.0 \exp(-(r/0.355)^2) - 225.6 \exp(-(r/0.855)^2)$ in $_{\Lambda\Lambda}^{6}$ He [in MeV, fm]

If $V_{\Lambda\Lambda}^{(\alpha)}$, instead of $V_{\Lambda\Lambda}^{(t)}$, is used for ${}^{5}_{\Lambda\Lambda}H$, $B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}H)$ is reduced to 3.45 MeV which gives $\Delta B_{\Lambda\Lambda}=0.97$ MeV. $\langle \phi_{\Lambda\Lambda}^{(t)} | V_{\Lambda\Lambda}^{(t)} | \phi_{\Lambda\Lambda}^{(t)} \rangle / \langle \phi_{\Lambda\Lambda}^{(t)} | V_{\Lambda\Lambda}^{(\alpha)} | \phi_{\Lambda\Lambda}^{(t)} \rangle \approx$ 1.27/0.97 = 1.31 for mNDs and 1.36/0.97 = 1.40 for NFs

H. Nemura, AIP Conf. Proc. <u>1011</u> (2008) 129

Coupling scheme

- **Coherent** Λ - Σ coupling
- $= {}^{4}{}_{\Sigma}H$ formation
- 🚥 α formation
- $\Lambda\Lambda$ - $\Lambda\Xi^{0}$ -p Ξ^{-} - $\Lambda\Sigma^{0}$ coupling

<u>Stopped Ξ⁻ on ⁶Li</u>

M. May, Nouvo Cim. A <u>102</u> (1989) 401

D. Zhu, C.B. Dover, A. Gal & M. May, Phys. Rev. Lett. 67 (1991) 2268

->	⁶ _{лл} Не + n + 31.88 меv	(1)
	⁵ _{лл} Н + d	(2)
	${}^{5}_{\Lambda}$ He + Λ + n + 27.75 MeV	(3)
	${}^{4}_{\Lambda}$ H + Λ + d + 9.08 MeV	(4)

~3% branching

 ${}^{4}{}_{\Lambda}$ H + Λ + p + n + 6.86 MeV ${}^{4}{}_{\Lambda}$ He + Λ + n + n + MeV 4 He + Λ + Λ + n + 24.63 MeV ${}^{3}{}_{\Lambda}$ H + Λ + d + n + MeV ${}^{3}{}_{\Lambda}$ H + Λ + p + n + n + MeV etc.

Ξ⁻ ⁶Li —

Production 1

Formation ratio of ${}^{6}_{\Lambda\Lambda}$ **He to** ${}^{5}_{\Lambda\Lambda}$ **H**

from stopped Ξ^- on ⁶Li

Aye Aye Min, Khin Swe Myint, J. Esmaili, Y. Akaishi, Few-Body Syst. <u>54</u> (2013) 381

$^{6}\text{Li}(\alpha\text{-d})$	2S absorption	2P absorption	3D absorption
1s	0.24	0.62	0.89
Os	0.016	0.024	0.029
h.o1s	0.12	0.39	0.42
MC sampling	1,600,000,000	51,200,000,000	51,200,000,000

S 0.04% P 30.3% D 68.9%

 $^{5}_{\Lambda\Lambda}$ H/ $^{6}_{\Lambda\Lambda}$ He \approx 1.24

A large population of ${}^{\rm 5}_{\Lambda\Lambda}{\rm H}$

 $\Xi^- + p \rightarrow \Lambda + \Lambda + 28.33 \text{ MeV} \implies B.E.(\alpha) = 28.30 \text{ MeV}$ Phase volume $\propto Q^{(3n-5)/2}$ for n-body breakup.

Weak-decay pion spectroscopy

I. Kumagai-Fuse et al., Genshikaku Kenkyu 41 (1996) 109

Missing-mass spectroscopy in S=-2 sector via one-step process !

Energy levels

 $0.0 \frac{\mathbf{n} + \mathbf{n} + \mathbf{p} + \mathbf{h} + \mathbf{h}}{-1.29} \frac{\mathbf{n} + \mathbf{n} + \mathbf{p} + \mathbf{p} + \mathbf{h} + \mathbf{h}}{-1.29}$

Possible reactions

⁶Li $(K^{-}, K^{+})^{6}_{\Lambda\Lambda}H$ ⁶Li $(K^{-}, K^{+}n)^{5}_{\Lambda\Lambda}H$ ⁷Be $(K^{-}, K^{+}d)^{5}_{\Lambda\Lambda}H$ etc.

Feasibility ?

Concluding remarks

Study of few-body neutron-rich hypernuclei,

typically ${}^{\bf 6}_{\Lambda} H$ and ${}^{\bf 5}_{\Lambda\Lambda} H$,

is a doorway to neutron-star matter physics.

Key issues

Coherent Λ **-** Σ **coupling**

 $\Lambda_{\rm coh}(\Lambda/\Sigma^0)$

Superfluidity

 $\Lambda\Lambda-\Xi^{-}p-\Lambda\Sigma^{0}$ isospin-violating couplings

"Transition" mean fields due to three-body forces

Thank you very much!