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● Our earlier work: We used an effective quark theory -
the Nambu-Jona-Lasinio (NJL) model - to calculate
parton distribution functions in free and bound
nucleons.
We obtained interesting results and predictions for the
unpolarized and polarized EMC effects.

● Here: We point out new effects for N 6= Z:

✦ Flavor dependence of nuclear parton distributions

✦ Parity violation in e−A deep inelast. scattering
(DIS)

✦ Paschos-Wolfenstein ratio in ν −A DIS.
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● Free nucleon: quark-diquark description based on the
Faddeev method.
We include scalar (0+) and axial vector (1+) diquarks.

diquark: nucleon:

⇒ Calculate parton distributions in the free nucleon.

● Nuclear matter described in mean field approximation:
Self consistent mean scalar and vector fields couple to
the quarks in the nucleon!
We include the following mean fields:
M = m− 2Gπ〈ψψ〉 ,
ω0 = 2Gω〈ψγ0ψ〉 , ρ0 = 2Gρ〈ψγ0τ3ψ〉.

● Incorporate these mean fields in the quark propagators
to calculate parton distributions in the bound nucleon.
Use the convolution formalism to get the parton
distributions in nuclear matter.
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M . . . constituent quark mass (M = m− 2Gπ〈ψψ〉)
Ms(a) . . . scalar (axial vector) diquark mass (pole of qq t-matrix)
MN . . . nucleon mass (pole of q-diquark t-matrix).
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● In-medium distributions softer than free ones: Binding effect on quark level.

● For N > Z, u-quarks feel additional binding (symmetry energy!) ⇒ larger
medium effects for u-quarks in neutron rich matter. (This effect is caused
mainly by the ρ0 field.)
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EMC ratio = F2A

F2A,naive
≃ 4uA+dA

4uAf+dAf

, where qAf = Zqpf +Nqnf .

● Case N > Z: When matter becomes neutron-rich, medium-modification of
u-quarks increases, but their number decreases ⇒ EMC effect becomes
more pronounced as Z/N decreases from 1 to 0.6, but for Z/N < 0.6 the
EMC effect becomes smaller because d-quarks begin to dominate.

● Case N < Z: When matter becomes proton-rich, medium modification of
u-quarks decreases and their number increases ⇒ EMC effect becomes
smaller.
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This flavor dependence should show up in many places, e.g.,
e+A→ e′ + π± +X, π± +A→ (ℓ+ℓ−) +X.

Here: Consider some physical quantity R, which is a ratio of
nuclear parton distributions:

R =
c1uA + c2dA

c3uA + c4dA
≃ A+B

dA − uA

dA + uA

≡ R0 + δnaiveR+ δmedR

A, B = known constants, R0 = A = value for N = Z,
δnaiveR = neutron excess correction obtained from free
(no-medium) parton distributions.

● If R could be measured, any deviation from the “naive
value” R0 + δnaiveR would be an indication for the
in-medium flavor dependence δmedR.

Note: Effects of charge symmetry breaking should also be considered.
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Parity violation from γ − Z0 interference:

leads to electron spin asymmetry σR−σL

σR+σL
for unpolarized targets:

APV =
GFQ
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2
is the naive estimate of neutron excess effects, using the “free” distributions uAf and dAf .
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In 2002, the NuTeV collaboration measured the following
Paschos-Wolfenstein ratio (all cross sections integrated over xA

and y):

R =
σ (νFe → νX) − σ (νFe → νX)

σ (νFe → µ−X) − σ (νFe → µ+X)

≃
(

1

2
− sin2 ΘW

)

−
(

1 − 7

3
sin2 ΘW

) 〈xAdA − xAuA〉
〈xAdA + xAuA〉

≡ R0 + δnaiveR+ δmedR

● If the Standard Model value of sin2 ΘW is used: Measured R
deviates from the “naive value” R0 + δnaiveR
(⇒ “NuTeV anomaly”).

● However: Including medium effects, and also charge
symmetry breaking effects (md > mu), the measured value of
R is reproduced with the Standard Model value of sin2 ΘW :
There is no anomaly!
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For nuclear systems with neutron excess, the isovector mean
field gives rise to interesting new medium modifications:

● EMC effect increases with increasing isospin asymmetry
(in the range 0.6 < Z

N < 1).

● Single-spin asymmetries in parity violating DIS are
predicted to increase with increasing neutron excess.

● “NuTeV anomaly” (Paschos-Wolfenstein ratio for ν −A
DIS) is no longer an anomaly: The experimental PW
ratio can be explained by in-medium flavor dependence
and charge symmetry breaking effects.
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● Polarized case: Nuclear scalar potential (smaller quark mass) leads to
enhancement of quark orbital angular momentum in the medium!
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∆u ∆d Σ gA

p 0.97 -0.30 0.67 1.27
7Li 0.91 -0.29 0.62 1.19
11B 0.88 -0.28 0.60 1.16
15N 0.87 -0.28 0.59 1.15
27Al 0.87 -0.28 0.59 1.15
nucl. matt. 0.74 -0.25 0.49 0.99

● Isoscalar spin sum: ∆uA + ∆dA ≡ Σ · (Pp + Pn) ,
where Σ ≡ ∆u+ ∆d is the isoscalar spin sum for a nucleon
bound in the valence level.

● Isovector spin sum: ∆uA − ∆dA ≡ gA · (Pp − Pn) , where
gA ≡ ∆u− ∆d is the isovector (Bjorken) spin sum for a
nucleon bound in the valence level.
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