T-odd effects in hadronic collisions

Daniël Boer KVI, University of Groningen

Outline

- Motivation from spin physics
- Sivers effect (f_{1T}^{\perp})
 - Sivers effect asymmetries in hadronic collisions
 - What is (T-)odd about it
- BM effect (h_1^{\perp})
 - Azimuthal asymmetries in unpolarized hadronic collisions
- Relation to GPDs
- Relation to twist-3 effects

Left-right asymmetries

Large single spin asymmetries in $p^{\uparrow} p \rightarrow \pi X$ have been observed at high \sqrt{s} E704 Collab. ('91); STAR ('02); BRAHMS ('05); ...

A left-right asymmetry

Pion distribution is asymmetric depending on transverse spin direction and on pion charge

The perturbatively generated SSA is very small (involves helicity flip)

Clearly a nonperturbative spin-orbit coupling, but how to describe such effects in a factorized, partonic approach in order to make predictions?

Single spin asymmetries in $p^{\uparrow}p \rightarrow \pi X$

Partonic correlators

Theoretical description of the cross sections is based on factorization:

Transverse Momentum of Quarks

For spin-orbit couplings it is natural to consider transverse momentum (TM) of the quarks inside a hadron

Natural, but more than just an extension of $f_1^q(x) \rightarrow f_1^q(x, \mathbf{k}_T^2)$

 k_T -odd functions may arise, that vanish upon integration over all k_T And also new spin-dependent terms may arise Ralston & Soper '79; Sivers '90; Mulders & Tangerman '95; D.B. & Mulders '98

Include partonic transverse momentum $\Phi(x) \rightarrow \Phi(x, \mathbf{k}_T)$: TMD factorization

TMD = transverse momentum dependent parton distribution function

Can be probed in for instance semi-inclusive DIS or Drell-Yan (DY)

Sivers effect

Proposal of a k_T and S_T dependent distribution function by Sivers ('90)

Captures nonperturbative spin-orbit coupling effects inside a polarized proton

$$\Phi(x, \boldsymbol{k}_T) = \frac{1}{2} f_1(x, \boldsymbol{k}_T^2) \mathcal{P} + \frac{\mathcal{P} \cdot (\boldsymbol{k}_T \times \boldsymbol{S}_T)}{2M} f_{1T}^{\perp}(x, \boldsymbol{k}_T^2) \mathcal{P} + \dots$$

Proposed to explain data on $p^{\uparrow} + p \rightarrow \pi^0 + X$ at $\sqrt{s} \approx 7$ GeV (Antille *et al.* '80)

TMD factorization of $p + p \rightarrow \pi + X$ not established (power suppressed asymmetry), but it works phenomenologically

Anselmino et al., since '95

Sivers effect in semi-inclusive DIS

Sivers effect leads to an unsuppressed $\sin(\phi_h - \phi_S)$ asymmetry in $e p^{\uparrow} \rightarrow e' h X \propto f_{1T}^{\perp} D_1$ D.B. & Mulders '98

Such an asymmetry has been clearly observed by the HERMES Collaboration TMD (or Collins-Soper) factorization established [later more]

Sivers effect in Drell-Yan

Sivers effect also leads to a $\sin(\phi - \phi_S)$ asymmetry in Drell-Yan $\propto f_{1T}^{\perp} \bar{f}_1$ Some predictions based on fit to SIDIS data:

Anselmino et al. '09

Sivers effect in Drell-Yan

Anselmino et al. '09

These $p^{\uparrow}p$ DY data are kinematically largely complementary to SIDIS data

Sivers effect in dijet production

Asymmetric jet or hadron correlations in $p^{\uparrow} p \rightarrow h_1 h_2 X$

D.B. & Vogelsang '04 Bacchetta *et al.* '05

Sivers effect $\Rightarrow \sin \delta \phi$ asymmetry $\delta \phi = \text{dijet}$ imbalance angle

RHIC data consistent with zero at the few percent level STAR Collaboration, Abelev *et al.* '07

Theoretically this Sivers asymmetry is not as straightforward as in SIDIS or DY Potential problems with factorization

Collins & Qiu '07, Collins '07

T-odd effects

The Sivers function is a $P \cdot (k_T \times S_T)$ correlation, which is T-odd since under time reversal transformation: $P \rightarrow -P$ and $S \rightarrow -S$ Sivers function is often called "naive" T-odd, as time reversal also interchanges $i \leftrightarrow f$

$$e p \to e' h X \quad \stackrel{T}{\leftrightarrow} \quad e' h X \to e p$$

which cannot be compared in practice, but theoretically also difficult because: multiparticle out-states are nontrivially related to multiparticle in-states

A T-odd correlation as part of a process does not need to imply time reversal violation De Rújula, Kaplan & De Rafael '71; Hagiwara, Hikasa, Kai '83

T-odd effects and factorization

But factorization allows one to go a step further:

 $T\sigma_{\text{SIDIS}} = T(H \otimes \Phi \otimes \Delta) = H \otimes T(\Phi \otimes \Delta)$

 ${\cal T}$ stands for the actual time reversal operation

One could select the T-invariant part of Δ and conclude f_{1T}^{\perp} is time reversal violating Collins '93

Based on gauge variant operator definition:

 $P \cdot (\boldsymbol{k}_T \times \boldsymbol{S}_T) f_{1T}^{\perp}(x, \boldsymbol{k}_T^2) \propto \mathsf{F.T.} \langle P, S_T | \overline{\psi}(0) \gamma^+ \psi(\boldsymbol{\xi}) | P, S_T \rangle \Big|_{\boldsymbol{\xi} = (\boldsymbol{\xi}^-, 0^+, \boldsymbol{\xi}_T)}$

Thanks to a model calculation by Brodsky, Hwang & Schmidt '02 taking into account final state interactions (FSI), Collins realized this conclusion is invalid

One has to consider the proper gauge invariant definition of $\Phi(x, \mathbf{k}_T)$

Link structure of TMDs

 $\Phi(x, \mathbf{k}_T)$ is a matrix element of operators that are nonlocal off the lightcone

$$\Phi(x, \boldsymbol{k}_T) = \mathsf{F}.\mathsf{T}.\left\langle P \mid \overline{\psi}(0) \,\mathcal{L}[0, \boldsymbol{\xi}] \,\psi(\xi) \mid P \right\rangle \Big|_{\boldsymbol{\xi} = (\boldsymbol{\xi}^-, 0^+, \boldsymbol{\xi}_T)}$$

$$\mathcal{L}[0,\boldsymbol{\xi}] = \mathcal{P} \exp\left(-ig \int_{\mathcal{C}[0,\boldsymbol{\xi}]} ds_{\mu} A^{\mu}(s)\right)$$

Proper gauge invariant definition of TMDs in SIDIS contains a future pointing Wilson line (FSI), whereas in Drell-Yan (DY) it is past pointing (ISI)

Obtaining the link structure

path-ordered exponentials in off-lightcone non-local operators

D.B. & Mulders '00 Belitsky, Ji & Yuan '03

DY: ISI SIDIS: FSI

Link structure of TMDs

Time reversal invariance relates $\Phi^{[+]}(x, p_T)$ of SIDIS to $\Phi^{[-]}(x, p_T)$ of Drell-Yan Collins '02

Time reversal invariance does not yield a constraint on $\Phi^{[\pm]}$, but a relation

 $f_{1T}^{\perp[+]} = -f_{1T}^{\perp[-]}$

Ignoring the link dependence yields $f_{1T}^{\perp} = 0$ because of time reversal invariance $f_{1T}^{\perp[\pm]}$ could be called naive T-odd (since not exchanging ISI and FSI) $\Phi(x, \mathbf{k}_T)$ contains parts that depend on H, universality is lost for those parts But predictability is not lost!

Process dependence of TMDs

There is a *calculable* process dependence, which yields the relation (Collins '02):

 $(f_{1T}^{\perp})_{\mathrm{SIDIS}} = -(f_{1T}^{\perp})_{\mathrm{DY}}$ to be tested

The color flow of a process is crucial (usually not the case in high energy scattering!) The more hadrons are observed, the more complicated the end result (ISI and FSI) Bomhof, Mulders & Pijlman '04

Collins-Soper factorization

Collins-Soper factorization in DY:

 $\Phi\otimes\bar\Phi\otimes H\otimes {\color{black}U}$

 \boldsymbol{U} is called the soft factor, a correlator of Wilson lines

Collins & Soper '81; Ji, Ma & Yuan '04 & '05

At tree level $(U(l_T^2) \propto \delta(l_T^2))$ this corresponds to the often used description:

Extension to $p p \rightarrow h h' X$ not clear

Transverse quark polarization

Besides f_{1T}^{\perp} there is another (naive) T-odd distribution function:

$$\Phi(x, \boldsymbol{k}_T) = \frac{1}{2} f_1(x, \boldsymbol{k}_T^2) \mathcal{P} + \frac{\boldsymbol{P} \cdot (\boldsymbol{k}_T \times \boldsymbol{S}_T)}{2M} f_{1T}^{\perp}(x, \boldsymbol{k}_T^2) \mathcal{P} + i\boldsymbol{h}_1^{\perp}(x, \boldsymbol{k}_T^2) \frac{\mathcal{P} \, \boldsymbol{k}_T}{M} + \dots$$

D.B. & Mulders '98

Transversely polarized quarks inside an *unpolarized* hadron Allowed by the symmetries as long as $k_T \neq 0$

It generates azimuthal asymmetries in unpolarized collisions, e.g. in DY

There is very interesting data from the 1980s on $\pi^- N \rightarrow \mu^+ \mu^- X$ It shows an anomalously large $\cos 2\phi$ asymmetry (w.r.t. pQCD predictions)

Azimuthal asymmetries in Drell-Yan in theory

Collinear factorization:

Mirkes & Ohnemus '95

Parton Model $\mathcal{O}(\alpha_s^0)$ $\lambda = 1, \ \mu = \nu = 0$ LO pQCD $\mathcal{O}(\alpha_s^1)$ $1 - \lambda - 2\nu = 0$ Lam-Tung relationNLO $\mathcal{O}(\alpha_s^2)$ $1 - \lambda - 2\nu \neq 0$ small and positive

Azimuthal asymmetries in Drell-Yan in experiment

Data: $1 - \lambda - 2\nu \neq 0$ large and negative! NA10 Collab. ('86/'88) & E615 Collab. ('89)

Data for $\pi^- N \to \mu^+ \mu^- X$, with N = D, W $\sqrt{s} \approx 20 \pm 3 \text{ GeV}$ lepton pair invariant mass $Q \sim 4 - 12 \text{ GeV}$

Nonzero h_1^{\perp} offers an explanation of this anomalous Drell-Yan data D.B. '99

Explanation in terms of h_1^{\perp}

 $(1 - \lambda - 2\nu) \propto h_1^{\perp}(\pi) h_1^{\perp}(N)$ $(1 - \lambda - 2\nu) \propto h$

Many model calculations of h_1^{\perp} and its asymmetries have been performed Goldstein & Gamberg '02, '07; D.B., Brodsky & Hwang '03 Lu & Ma '04, '05; Barone, Lu & Ma '07; Zhang, Lu, Ma & Schmidt '08 Courtoy, Scopetta & Vento '09; Lu & Schmidt '09

Allows to predict other observables, such as DY for $pp, \bar{p}p, p^{\uparrow}p, p^{\uparrow}\pi$, etc

New unpolarized DY data

Asymmetry for p p and p d expected to be smaller, as confirmed by recent Fermilab data FNAL-E866/NuSea Collaboration, L.Y. Zhu *et al.* '07 & '09 \rightarrow [next talk]

Asymmetry for $\bar{p} p$ expected to be very similar to πp (both have valence antiquarks)

Although this depends on the kinematics too of course:

h_1^\perp in dijet production

 h_1^{\perp} of quarks and gluons contributes to the dijet imbalance $\delta \phi$ distribution Lu & Schmidt '08; D.B., Mulders & Pisano '09

 $h_1^{\perp g}$: linearly polarized gluons inside an unpolarized hadron (T-, chiral- & k_T -even) In the plane transverse to the collision axis: $\delta \phi = \phi_{j_1} - \phi_{j_2} - \pi$ In unpolarized scattering its distribution is often used to extract $\langle k_T^2 \rangle$ of partons Sizeable h_1^{\perp} contributions can modify the $\delta \phi$ distribution (especially in $p \ \bar{p} \rightarrow$ jet jet X)

Possible relation between TMDs and GPDs

If the Sivers effect describes spin-orbit coupling, one may expect a relation with OAM and hence with GPDs

A relation between f_{1T}^{\perp} and the GPD E has been put forward Burkardt '04; Burkardt & Hwang '04

$$f_{1T}^{\perp(1)}(x) \equiv \int d^2 \mathbf{k}_T \frac{\mathbf{k}_T^2}{2M^2} f_{1T}^{\perp}(x, \mathbf{k}_T^2) \propto S_T \times b_{\perp} \int db_{\perp}^2 \mathbf{I}(b_{\perp}^2) \frac{\partial}{\partial b_{\perp}^2} E(x, b_{\perp}^2)$$

Note: k_T and b_{\perp} are not each other's Fourier conjugates

The factor $I(b_{\perp}^2)$ is called the lensing function

Allows to link the Sivers function to the anomalous magnetic moment of $\boldsymbol{u}, \boldsymbol{d}$

A similar relation between h_1^{\perp} and the chiral-odd GPD combination $\bar{E}_T \equiv E_T + 2\tilde{H}_T$

Lattice results

$S_T \times b_\perp$ correlations exist!

QCDSF & UKQCD Collaboration, Göckeler *et al.* '07

 $h_1^{\perp \, u}$ same sign as $h_1^{\perp \, d}$ Burkardt & Hannafious '07

The lensing function

The lensing function has recently been calculated in an eikonal approach

Gamberg & Schlegel '09

Other explanations of the asymmetries

Qiu-Sterman effect proposed as a mechanism for single spin asymmetries in $p^{\uparrow} p \rightarrow \pi X$ Qiu & Sterman '91

It is a collinear twist-3 function relevant for the high- p_T description

$$T(x, S_T) \stackrel{A^+=0}{\propto} \mathsf{F.T.} \langle P | \ \overline{\psi}(0) \ \int d\eta^- \ F^{+\alpha}(\eta^-) \ \gamma^+ \ \psi(\xi^-) \ | P \rangle$$

Applicable when collinear factorization is justified

The Sivers effect in Drell-Yan deals with a multi-scale process: M, Q_T and Q

TMD or Collins-Soper factorization applies when $Q_T^2 \ll Q^2$ Collins & Soper '81; Ji, Ma & Yuan '04 & '05

Collinear factorization applies when $Q_T^2 \sim Q^2$

These two descriptions can actually be connected! Ji, Qiu, Vogelsang, Yuan '06

Large transverse momentum tails

Consider the large transverse momentum tails of TMDs:

$$f_1(x, \boldsymbol{p}_T^2) \stackrel{\boldsymbol{p}_T^2 \gg M^2}{\sim} \alpha_s \frac{1}{\boldsymbol{p}_T^2} \left(K \otimes f_1 \right) (x)$$

$$f_{1T}^{\perp}(x, \boldsymbol{p}_T^2) \stackrel{\boldsymbol{p}_T^2 \gg M^2}{\sim} \alpha_s \frac{M^2}{\boldsymbol{p}_T^4} \left(K' \otimes f_{1T}^{\perp(1)} \right) (x)$$

$$f_{1T}^{\perp(1)}(x) \equiv \int d^2 \mathbf{k}_T \frac{\mathbf{k}_T^2}{2M^2} f_{1T}^{\perp}(x, \mathbf{k}_T^2) \propto T(x, S_T)$$

The first transverse moment of the Sivers function is the Qiu-Sterman function D.B., Mulders & Pijlman '03

The Qiu-Sterman effect determines the large p_T behavior of the Sivers effect This yields precisely the high Q_T result! Ji, Qiu, Vogelsang, Yuan '06

Thanks to this one can consider the integral of the Sivers asymmetry over all Q_T

$\cos 2\phi$ asymmetry as function of Q_T

The high- p_T tail of h_1^{\perp} is related to a chiral-odd QS effect (power suppressed)

But the $\cos(2\phi)$ asymmetry at high Q_T is dominated by the perturbative contribution

$$\nu = \nu_{h_1^{\perp}} + \nu_{\text{pert}} + \mathcal{O}(\frac{Q_T^2}{Q^2}, \frac{M^2}{Q_T^2})$$

Bacchetta, D.B., Diehl, Mulders '08

This time the integral over all Q_T picks up both contributions The Q_T^2 -weighted asymmetry is mostly sensitive to the high Q_T perturbative result The Q_T^2 -weighted asymmetry at tree level and at order α_s are very different expressions Very different from Sivers effect asymmetries

$\cos 2\phi$ asymmetry from h_1^{\perp} beyond tree level

Collins-Soper factorization dictates the Q^2 dependence of azimuthal asymmetries Assuming Gaussian k_T dependence for h_1^{\perp} , its contribution to ν is proportional to

Considerable Sudakov suppression with increasing $Q: \sim 1/Q$ (effectively twist-3) On the other hand, the perturbative contribution falls off as $1/Q^2$

Conclusions

- Sivers & BM effects are naive T-odd effects: their correlations are T-odd, but distributions multiplying them are process dependent
- These naive T-odd effects give rise to many different azimuthal asymmetries Several such asymmetries are visible in the available data
- Calculable process dependence, so universality is lost, but predictability is not Tests of this are expected soon
- Lattice results on asymmetric GPDs suggest these TMD effects are nonzero
- Q_T and Q dependence of TMD asymmetries dictated by factorization
- Factorization for DY under control, for dijet and dihadron production not (yet?)
- All in all, a lot of theoretical & experimental progress in recent years!

Back-up Slides

KEK theory center workshop on High-energy hadron physics with hadron beams, January 6, 2010

T-odd effects and factorization

But factorization allows one to go a step further:

 $T\sigma_{\rm DIS} = T(H \otimes \Phi) = H \otimes T\Phi$

Here T stands for the actual time reversal operation

Time reversal invariance leads to the constraint

$$(-i\gamma_5 C)\Phi(x,\bar{P},\bar{S})(-i\gamma_5 C) = \Phi(x,P,S)^*$$

where $\bar{P}=(P^0,-\boldsymbol{P})$, etc

T-odd correlations in the parametrization of $\Phi(x)$ are really time reversal violating

So what about processes involving TMDs?

$$T\sigma_{\text{SIDIS}} = T(H \otimes \Phi \otimes \Delta) = H \otimes T(\Phi \otimes \Delta)$$

Here one could select the T-even part of Δ and conclude f_{1T}^{\perp} is time reversal violating Collins '93

Collins-Soper factorization

$$W_{\mathsf{DY}}^{\mu\nu} \propto |H(x_1, x_2, Q^2)|^2 \sum_a e_a^2 \int d^2 p_T \, d^2 k_T \, d^2 l_T \, \delta^{(2)}(p_T + k_T - l_T - q_T) \\ \times \operatorname{Tr} \left\{ \Phi^a(x_1, p_T) \gamma^{\mu} \bar{\Phi}^a(x_2, k_T) \gamma^{\nu} \right\} \, U(l_T^2) \, + \, \mathcal{O}(Q_T^2/Q^2)$$

Collins & Soper '81; Ji, Ma & Yuan '05

At tree level $(U(l_T^2) \propto \delta(l_T^2))$ this corresponds to the often used description:

Extension to $p p \rightarrow h h' X$ not clear

 h_1^\perp in $p \ \bar{p} \to \gamma$ jet X

$$\frac{d\sigma^{h_1 h_2 \to \gamma \text{ jet } X}}{d\eta_\gamma \, d\eta_j \, d^2 \boldsymbol{K}_{\gamma \perp} \, d^2 \boldsymbol{q}_\perp} \quad \propto \quad (1 + \nu_{\mathsf{DY}} \, \boldsymbol{R} \cos 2(\phi_\perp - \phi_\gamma))$$

 ν_{DY} probed at the scale $|\mathbf{K}_{\gamma\perp}| \ (\neq Q)$ Proportionality factor R only function of f_1

$$y \equiv -\frac{\hat{t}}{\hat{s}} = \frac{1}{e^{\eta_{\gamma} - \eta_{j}} + 1}$$

For typical Tevatron kinematics in the central region (DØ, arXiv:0804.1107) $\nu_{\rm DY} R \sim 5 - 15\%$ expected D.B., Mulders & Pisano '08

Single spin asymmetries in $p^{\uparrow}p \to \pi X$

SSA in $p p^{\uparrow} \rightarrow \pi X$ [E704, AGS, STAR, BRAHMS]

Description in terms of Sivers (and Collins) effect studied extensively Anselmino, Boglione, D'Alesio, Murgia, and collaborators, since 1995

Twist-3 (factorization not proven) remains to be connected to Qiu-Sterman effect

The polarized Drell-Yan process

In the case of one transversely polarized hadron beam:

$$\frac{d\sigma}{d\Omega \ d\phi_S} \propto 1 + \cos^2\theta + \sin^2\theta \left[\frac{\nu}{2} \ \cos 2\phi - \rho \ |\boldsymbol{S}_T| \ \sin(\phi + \phi_S)\right] + \dots$$

Assuming *u*-quark dominance and Gaussian k_T -dependence for h_1^{\perp} :

First extraction of h_1 from HERMES, COMPASS, BELLE data indicates $h_1 \approx f_1/3$ Anselmino *et al.* '07

DY at **Compass**

Measurement of ν and ρ with only one polarized beam offers a probe of *transversity* The distribution of transversely polarized quarks inside a transversely polarized hadron

The COMPASS experiment plans to extract them using $\pi^{\pm} p^{\uparrow}$ Drell-Yan Would provide valuable information on the flavor dependence of h_1 and h_1^{\perp}

Especially $\pi^+ p^{\uparrow}$ is of interest, since no data yet and it provides information on the *d*-quark ratio $h_1^{\perp d/p}/h_1^{d/p}$, without suppression by a charge-squared factor

Using the input on h_1^{\perp} from for example unpolarized $p \bar{p}$ Drell-Yan would allow for an extraction of h_1 from $\pi^{\pm} p^{\uparrow}$ Drell-Yan at COMPASS

Future DY data

Usually Drell-Yan data is taken in the safe region, cutting out the resonances $(J/\psi \text{ and } \Upsilon)$

They are however also vector particles Anselmino, Barone, Drago & Nikolaev '04

Note that the NA10 data ('86) on the Υ is very similar to that above/below it

