J/ψ -N interaction and J/ψ - nuclei

R. Seki (CSUN) *High-energy hadron physics with hadron beams*

KEK, January 8, 2010

- 0. Quark masses. Lightest charmed mesons.
- 1. The case of the D·bar-N interaction.
- 2. J/ ψ and J/ ψ -N mass spectrum, and J/ ψ size.
- 3. J/ψ -N interaction
- 4. J/ ψ production (brief)
- 5. J/ ψ nuclei (brief)
- 6. Nuclear interaction of the excited c-c·bar mesons (brief)

Quark masses*

 $\begin{array}{rcl} m_u &\approx 1.5 \sim 3.3 \ {\rm MeV} \\ m_d &\approx 3.5 \sim 6.0 \ {\rm MeV} \\ m_s &\approx 66 \sim 126 \ {\rm MeV} \end{array}$

m » $\Lambda_{QCD} \approx (1 \sim 4) \cdot 100$ MeV: perturbative treatments of m_q become possible \rightarrow Effective field theoretical (EFT) treatments of QCD (even nonrelativistic QCD) become possible**

 $m_c \approx 1.16 \sim 1.34 \text{ GeV}$

*PDF: The u-, d-, and s-quark masses are estimates of so-called \current-quark masses," in a mass- independent subtraction scheme such as MS. The ratios mu/md and ms /md are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from SU(3) splittings in hadron masses. We have normalized the MS masses at a renormalization scale of ¹ = 2 GeV. Results quoted in the literature at ¹ = 1 GeV have been rescaled by dividing by 1:35.

**cf. N. Brambilla & A. Vairo, Rev. Mod. Phys. 77, 1423 (2005).

Lightest charmed mesons

(Lightest) charmed mesons: $\Gamma \approx 10^{-4}$ eV.

$$\begin{split} m_{c} + m_{d} &\approx 1.2 \text{ GeV} \\ D^{+} (c \underline{d}), \ D^{o} (c \underline{u}), \ D^{--} (\underline{c} d), \ \underline{D}^{o} (\underline{c} u): \ I(J^{P}) = \frac{1}{2}(0^{--}), \ m_{D} &\approx 1.87 \text{ GeV} \\ D_{s}^{+} (c \underline{s}), \ D^{--} (\underline{c} s) &: \ I(J^{P}) = 0(0^{--}), \ m_{Ds} &\approx 1.97 \text{ GeV} \end{split}$$

(Lightest) C<u>C</u> mesons: C<u>C</u> in 1S states.

C<u>C</u> in 1S states. $2m_c \approx 2.3 \sim 2.7 \text{ GeV}$

$$\begin{split} \eta_{\rm c} \ ({\rm c} \ \underline{\rm c}) \ : & I(J^{\rm P}) = 0(0^{--}), \quad {\rm m}_{\eta {\rm c}} \ \approx 2.98 \ {\rm GeV}, \quad \Gamma \ \approx \ 27 \ {\rm MeV} \\ \mathbf{J}/\psi \ ({\rm c} \ \underline{\rm c}) \ : & I(J^{\rm P}) = 0(1^{--}), \quad {\rm m}_{J/\psi} \approx 3.10 \ {\rm MeV}, \quad \Gamma \ \approx \ 93 \ {\rm eV} \end{split}$$

Note: $2m_u + m_d \approx 6.5 \sim 13$ MeV, while $M_p \approx 938.3$ MeV.

1. The case of D·bar-N interaction

Attractive. Probably strong enough to form <u>D</u>-N bound states.

One π -exchange interaction: S.Yasui & K.Sudoh, PRD(2009). Bound state: I = 0 and $J^P = \frac{1}{2^{-1}}$ $E_{B} = 1.4 \text{ MeV} \rightarrow a = +4.7 \text{ fm}$ and R = 3.8 fmwith the coupled channels of $m_D^{o} - m_D^{-} \approx 5 \text{ MeV}$ $|\bar{D}N\rangle = c_0^D(|D^-p\rangle - |\bar{D}^0n\rangle) + c_1^D(|D^{*-}p\rangle - |\bar{D}^{*0}n\rangle) \qquad m_D^* - m_D \approx 140 \text{ MeV}$ \rightarrow D·bar nuclear bound sates: Coupled atomic + nuclear bound states of charmed mesons with the meson-nucleon bound-states of I = 0 and $J^P = \frac{1}{2}^{-1}$ \rightarrow nuclear shell structure possibly destroyed?

But hold the horse.

Quark-meson coupling model: (Guichon, Fleck-Benz-Shimizu-Yazaki,Saito-Thomas) →K.Saito, K.Tsushima, A.W.Thomas, PPNP(2007): Non-interacting N bag model in Rel. Mean Field (QHD) model, σ, ω, ρ coupling to q, Q, ~self-consistintly at the N and nuclear levels. Tsushima,Lu,Thomas,Saito,Landau, PRC(1999)

D · bar mass shift at ~ nuclear matter (at the center of Pb): $\delta m_D \approx -45 \text{ MeV}$

QCD sum rule: A.Hayashigaki, PLB(2000) on D, noting $\delta m_D \approx \delta m_D \approx -50 \text{ MeV}$

Yasui - Sudoh <u>D</u>N scattering length roughly corresponds to: $a = +4.7 \text{fm} \rightarrow \delta m_D = -17.4 \text{MeV} (\Lambda = 1.27 \text{GeV})$ $-22.4 \text{MeV} (\Lambda = 1.00 \text{GeV})$

However, at the LO meson-baryon interaction,

Chiral SU(3) \rightarrow SU(4) model:

A.Mishra, Bratkovskaya, Shaffer-Bielich, Schramm, Stöcker, PRC(2004) $\delta m_D = \text{even down to} \sim -150 \text{MeV}$

Hofmann-Lutz (coupled-equation) model: Includes all $J^P = \frac{1}{2}$ pseudoscalar-baryon states consisting of u, d, s, c with s-wave interactions using the universal vector coupling strength: M.F.M.Lutz & C.L.Korpa, PL(2006); J.Hofmann & Lutz, NPA(2005) $\delta m_D = +17 \text{ MeV}$

Strong coupling of various channels makes the strength of the \underline{D} -N interaction much uncertain.

C-C-bar meson mass spectrum

2. J/ψ and J/ψ - N mass spectrum, and J/ψ size

> J/ψ(1s): I=0, G= -, J=1, PC= - -M=3097MeV, Γ=0.093MeV

> Like $\phi(1020)$ of s s·bar but with Γ =4.3MeV Decaying to K's.

 $\eta_{c}(1s)$: $\Gamma=27MeV$ May not be pure c c·bar? N + J/ ψ couples little to other hadronic channels: J/ ψ have a lonely life with N.

1) The J/ ψ mass is below the D - D·bar mass by more than 60 MeV.

2) The proton - J/ ψ mass is below the Λ_c - D·bar mass by about 120 MeV: Mass (Λ_c + Dbar) $\approx 4.1561 \pm 0.0002$ GeV Mass (p + J/ ψ) $\approx 4.0352 \pm 0.0001$ GeV All other OZI-allowed hadronic states with the same quantum number of N + J/ ψ have higher masses.

3) The J/ ψ mass is above the $\eta_c(1s)$ mass by 117 MeV, but a transition to $\eta_c(1s)$ involves a spin flip of c or c \cdot bar. Because of the large mass, the transition is expected to be rare.

4) Coupling to OZI-non-allowed channels is expected to be small: *S.J. Brodsky & G. A. Miller, PL B412, 125 (1997).*

* N + J/ $\psi \rightarrow$ N + J/ $\psi + \pi + \pi$ Isospin allowed via two-pion exchanges but down by the order of $(m_{\pi}/4\pi f_{\pi})^2 \approx 1\%$. * $J/\psi \rightarrow e^+ + e^-$ 5.94 ± 0.06 % $\mu^+ + \mu^-$ 5.93 ± 0.06 % $\rho + \pi$ 1.69 ± 0.15 %: the largest two-body hadronic branching ratio ($\rho \pi$ puzzle: ρ has c-cbar component?) but $N + J/\psi \rightarrow (N + \rho + \pi) \rightarrow N + J/\psi$ unlikely with the order of 10⁻⁴ % interaction strength. Also N + J/ $\psi \rightarrow$ (N+D+ D·bar) \rightarrow N + J/ ψ unlikely with about 0.4 % interaction strength.

 J/ψ is small:

At short distances, the non-relativistic C and C·bar in J/ ψ interact through the color singlet (P₀) part of the Coulombic potential

٠

$$V(r) = -\frac{4}{3} \frac{\alpha_{\rm s}(1/r)}{r} P_0 + \frac{2}{3} \frac{\alpha_{\rm s}(1/r)}{r} P_8$$

The Bohr radius of this C-C·bar bound state is

$$a_o = (3/2) [m_c \alpha_s(1/a_0)]^{-1}$$
.

Numerically

$$\alpha_{s}(\Lambda_{Q}) \approx 0.5 \sim 0.6$$
 $[\alpha_{s}(q) = g(q)^{2}/4\pi]$
 $a_{o} \approx 0.3 \text{ fm}$ $(1/a_{0} \equiv \Lambda_{Q} \approx 0.75 \sim 0.64 \text{ GeV})$
N.B. $\Lambda_{Q} \equiv 1/a_{0}$.

Note: $-4/3 = t_1^a \cdot t_2^a$ for the color singlet pair.

4. J/ψ -N interaction is definitely attractive through QCD van der Waals (two gluon exchange) interaction:

The J/ ψ -N amplitude at the threshold in Born approximation is expressed in the second order of the color dipole coupling $\hat{H}_{int} = -(t_1^a - t_2^a)\mathbf{r} \cdot \mathbf{E}^a$:

$$f_{\rm B} = -\frac{m_{\rm red}}{2\pi} \frac{2\pi}{3} \alpha_s \left\langle \varphi \left| r^i \frac{1}{H^{(8)} + \epsilon} r^j \right| \varphi \right\rangle_{\mathbf{J}/\psi} \langle K_2 | E_i^a E_j^a | K_1 \rangle_{\mathbf{N}} (K_I = K_2)$$
$$= -\frac{m_{\rm red}}{2\pi} \left\langle 4\alpha_{\mathbf{J}/\psi} \left\langle \frac{1}{2} \mathbf{E}_a \cdot \mathbf{E}_a \right\rangle_{\mathbf{N}} \right\rangle_{\mathbf{N}}$$

Here,

$$\begin{split} J/\psi \text{ chromo-polarizability: } \alpha_{J/\psi} &\approx d_2 a_0^{-3}/4 \quad [d_2 = 7 \cdot (4\pi/27), \text{ Wilson coefficient (1S) }; \\ \text{c-c-bar octet state propagator: } (\mathrm{H}^{(8)} + \epsilon)^{-1} \,. \end{split}$$
 (Peskin, $\mathrm{N_c} \rightarrow \infty$)]

 $f_{\rm B}$ is expressed in the forms of multi-pole expansion*,

of operator product expansion, and (QCD) EFT/HQ formulation **

*K.Gottfried (1978), M.B.Voloshin (1979), M.Peshkin (1979); G.Bhanot & Peshkin (1979), T.M.Yan (1980), A.B.Kaidalov & P.E.Volkovitsky (1992).

**M. Luke, A. V. Manohar, & M. J. Savage (1992), S.J.Brodsky and G. A. Miller (1997).

Approximation (thus the source of uncertainties) on the two major factors evaluated at Λ_0 :

1) The J/ ψ chromo-polarizability: $\alpha_{J/\psi} \approx d_2 a_0^{-3}/4 \approx 0.9 \text{ GeV}^{-3}$ (N_c $\rightarrow \infty$; M.Peshkin(1979)) $\approx 2.0 \text{ GeV}^{-3}$ and up (A.Sibirtsev & M.B.Voloshin (2005)).

2) The N matrix element of the gluon operator: $\langle \frac{1}{2}\mathbf{E}^{\mathbf{a}}\cdot\mathbf{E}^{\mathbf{a}}\rangle_{N} \approx (4\pi^{2}/9)\langle T_{\mu}^{\ \mu}\rangle_{N} + 2\pi \alpha_{s}(1/a_{0})\langle T_{G}^{\ 00}\rangle$ $\approx (3V_{2}/8 + \pi / 9\alpha_{s}) m_{N} \approx m_{N}$ Here, $T(\Lambda_{Q})$ = the energy-momentum tensor $V_{2}(\Lambda_{Q}) \approx 0.5$, the gluon momentum fraction in N Note, however, neglect of the second term (formally in NLO) leads to $\approx (1/4) m_{N}$ (A.B.Kaidalov & P.E.Volkovitsky(1992)) So, we have found the Born approximation of the J/ψ - N scattering amplitude at the threshold. It is

$$a^B_{j/\psi} = 2m_{red} \int d^3 r V(r)$$

in terms of the local J/ψ - N potential V(r).

By writing $V(r) = V_0 \cdot [V_N \delta^3(r)] = \delta m [V_N \delta^3(r)]$

obtain
$$\delta m = \frac{a_{j/\psi}^B}{2m_{red}} \frac{1}{V_N} \rightarrow \frac{a_{j/\psi}^B}{2m_{red}} \rho_0 \quad \text{with } \rho_0 = 0.172 \text{ fm}^{-3}$$

by neglecting the Fermi motion and possible modification of V(r) in the presence of other nucleons.

 $a_{J/\psi-N}^{B} \rightarrow a_{J/\psi-N}$ or $\sigma_{J/\psi}$ is a different matter.

How to
$$a_{J/\psi-N}^{B} \rightarrow a_{J/\psi-N}$$

1) Assume the form of V(r): V(r) = V₀ exp($-r^2/R^2$) R ~ the nucleon size, 0.8 fm (Brodsky & Miller, 1997) $a_{J/\psi-N}^{B} = -0.19 \text{ fm} \rightarrow a_{J/\psi-N} = -0.24 \text{ fm by solving Sch. Eq.}$

2) Apply the LO NR J/ ψ -N EFT:

The EFT treatment reveals the regularization dependence of $a_{J/\psi-N}^{B}$, $a_{J/\psi-N}^{B} = a_{J/\psi-N}^{B}$ (Λ), or the intrinsic ambiguity with δ m: For the J/ ψ scattering amplitude, write

$$V_N \delta^3(r) = \frac{1}{\Lambda^3} \delta^3(r) \quad \text{in} \quad V(r) = V_0 \cdot [V_N \delta^3(r)] = \delta m [V_N \delta^3(r)]$$

The point is simply that $a_{J/\psi-N}$ is an observable and independent of Λ , but $a_{J/\psi-N}^{B}$ is not.

The difference between $a_{J/\psi-N}$ and $a_{J/\psi-N}^B$ in our $J/\psi-N$ case is expected to be small as the interaction being weak:

$$a_{J/\psi-N}^{B} = -0.19 \text{ fm} \rightarrow a_{J/\psi-N} = -0.24 \text{ fm}$$
 (Brodsky & Miller, 1997)
= -0.22 fm (EFT, R.S.)

δm (MeV) and the spin-averaged $a_{J/\psi\text{-}N}\,$ (fm) calculations (All with ~): $_{pQCD}$

$-(8 \sim 11)$		Luke, Manohar & Savage (1992)
	-0.24	Brodsky, Miller (1997)
-8±3		Lee,Ko (2003)
-11	-0.2	deTeramond, Epinoza, & Ortega-Rodriguez (1998)*
-3	-0.06	Kaidalov & Volkovitsky(1992)
≤ -21		Sibirtsev, Voloshin(2005)
Sum rule		

-7	-0.2	Klingl,Kim,Lee,Morath,Weise,(1999)
-(4~7)	≈ -0.1	Hayashigaki(1999)

Lattice**

- 0.71±0.48 Yokokawa,Sasaki,Hatsuda,Hayashigaki(2006)

exp. analysis

~0.1 (magnitude) (γ prod.) Hüfner et al.(2000)

-11 -0.2 *(p-p A_{NN})

**A new, more precise lattice calculation is underway (private comm. S. Sasaki)

4. J/ ψ production

F. Sakuma & H. Ohnishi (RIKEN)

• p-bar p $\rightarrow \pi^{o} J/\psi$ cross sections from $J/\psi \rightarrow$ p-bar p π^{o}

FIG. 4. Theoretical and experimental cross sections for $p\bar{p} \rightarrow \pi^0 J/\psi$. The theoretical predictions are the constant amplitude result Eq. (7) (solid) and the range of PCAC cross sections, from Eq. (8) (filled). The experimental points are from E760 [9].

A.Lundborg, T.Barnes, U.Wiedner, PRD73, 096003 (2006).

Some possible experiments

TABLE II. Kinematics for the production of η_c -nucleus bound states. All quantities are given in GeV.

Process	ε	р с.т.	p_{1}^{lab}
γ^{3} He \rightarrow (³ He η_{c})	0.020	2.20	4.52
$pd \rightarrow ({}^{3}\text{He}\eta_{c})$	0.020	2.48	7.64
$\bar{p}^{4}\text{He} \rightarrow (^{3}\text{H}\eta_{c})$	0.020	1.48	2.30
$\gamma^4 \text{He} \rightarrow (^4 \text{He} \eta_c)$	0.120	2.24	3.96
$n^{3}\text{He} \rightarrow (^{4}\text{He}\eta_{c})$	0.120	2.60	6.09
$dd \rightarrow ({}^{4}\text{He} \eta_{c})$	0.120	2.71	9.51

S.J.Brodsky, I.Schmidt, & G.F.deTeramond, PRL 64, 1011(1990)

 $\pi^+ d \to J/\psi p_1 p_2$

S.J.Brodsky & G.A.Miller, PLB 412, 125 (1997)

p·bar ⁴He $\rightarrow \pi$ (all charges) + 3nucleons_{J/ ψ}

5. J/ ψ -nuclei

How attractive is the nuclear interaction to form a bound state with nuclei?:

A simple estimate

For a mass μ particle in a square-well potential V of the radius R:

 $V \leq -\frac{1}{2\mu} \left(\frac{\pi}{2R}\right)^2 \quad \text{The equality is for the unitary limit } (E_{\rm B} = 0).$ $R = (1.12 \, fm) A^{1/3} = \left(\frac{3}{4\pi\rho_o}\right)^{1/3} A^{1/3} \quad \text{with } \rho_o = 0.172 \, fm^{-3}$

We get

Let's

$$\begin{array}{ll} V & \leq - \left(20.4 \; MeV \right) A^{-2/3} & \mbox{ for } \mu = m_{\underline{D}} \; \approx 1.87 \; GeV \\ & \leq - \left(12.3 \; MeV \right) A^{-2/3} & \mbox{ for } \mu = m_{J/\psi} \approx 3.10 \; GeV \end{array}$$

 J/ψ -nucleus folded potential

The approximation is

$$V_{J/\psi-A}(r) \approx \int d^3 r' V_{J/\psi-N}(r-r') \rho_A(r')$$

If the J/ ψ interaction is weak, the standard "lowest-order impulse approximation" in nuclear physics is

$$V_{J/\psi-A}(r) = \frac{2\pi}{m_{red}} a_{J/\psi-N} \rho_A(r).$$

Note that if the interaction should be strong enough to form a bound state, $a_{J/\psi}$ diverges and then changes its sign, $- \rightarrow +$, as the strength increases. $a_{J/\psi} \rightarrow \pm \infty$ diverges; $\sigma_{J/\psi} \rightarrow \infty$ unless inelastic process also occurs.

J/ψ nuclei using folded potentials

- * *Nuclear-Bound Quarkonium*, S.J.Brodsky, I.Schmidt, & G.F.deTeramond, PRL(1990). *Comment:* D.A.Wasson, PRL(1991).
- * Heavy-Quarkonia interactions with nucleons and nuclei, A.B.Kaidalov & P.E.Volkovitsky, PRL(1992)
- * Is J/\u03c6-nucleon scattering dominated by the gluonic van der Waals interaction? S.J.Brodsky & G.A.Miller, PLB(1997)
- * Proton-proton spin correlations at charm threshold and quarkonium bound to nuclei, G.F.deTeramond, R.Espinoza, & M.Ortega-Rodriguez, PRD(1998).

Quark-meson coupling model

* Nucleon and hadron structure changes in the nuclear medium and the impact on observables, K.Sato, K.Ysushima, & A.W.Thomas, PPNP(2007).

* Binding of D,D and J/ mesons in nuclei, K.Tsushima, arXiv:0907.0244v1 [nucl-th].

New nuclear structure with J/ψ ?

A small (0.2 ~0.3 fm), heavy (~3 m_N), spin 1 and negative parity J/ ψ placed in a nucleus with

 $v_N > v_{J/\psi}$: ~ Nucleons move around J/ψ (Born-Oppenheimer)

For example, a J/ ψ would sit in the middle of four nucleons in ${}^{4}\text{He}_{J/\psi}$, squeezing the ${}^{4}\text{He}$ structure, while the nuclear ompressibility coefficient is $b_{\text{comp}} \equiv \rho^2 \partial^2(E/A) / \partial \rho^2 \equiv K/9 \approx 13 \text{MeV}.$

The spin/parity 1⁻: Effects on shell structure in heavier nuclei?

The real picture depends on the magnitude of $V_{J/\psi-N} E_{B,J/\psi}$, and $K.E_{J/\psi} = V_{J/\psi-N} + E_{B,J/\psi}$.

6. NLO effect and nuclear interaction of the excited c-c·bar mesons

Charmonium	J^{PC}	QCD 2nd order Stark Effect	QCD sum rules	Effects of $D\overline{D}$ loop
η_c	0^+	- 8 MeV	-5 MeV	No effect
J/ψ	$1^{}$	-8 MeV	-7 MeV	< 2 MeV
X0,1,2	$0, 1, 2^{++}$	- 40 MeV	-60 MeV	No effect on χ_1
$\psi(3686)$	1	-100 MeV		< 30 MeV
$\psi(3770)$	1	-140 MeV		< 40 MeV

TABLE 1. Charmonium Mass shift in nuclear matter in MeV

S.H.Lee, arXiv:nucl-th/0310080 T.Song & S. H. Lee, PRD 72, 034002 (2005).

The issue of the coupling to other channels including inelastic ones.

Strong coupling of ψ ' to J/ ψ

$$V_{\psi'} \approx -21 \text{ MeV} \times \left[\frac{1+C}{2} \frac{\alpha_{\psi'}}{2 \text{ GeV}^{-3}}\right]$$

$$\begin{split} \Gamma_{\psi'J/\psi} &= |\mathcal{T}_{\psi'J/\psi}|^2 \frac{p_f}{32\pi (M_{\psi'} + m_N)M_{\psi'}m_N} \rho_N \\ &\approx 70 \text{ MeV} \bigg[\frac{1+C}{2} \bigg]^2 \frac{[\alpha_{\psi'}}{2 \text{ GeV}^{-3}} \bigg]^2 |F(q^2)|^2 \\ &\qquad \sigma(\psi' + N \to J/\psi + N) = \frac{1}{p_i} \frac{|\mathcal{T}_{\psi'J/\psi}|^2 p_f}{16\pi (M_{\psi'} + m_N)^2} \\ &\qquad \approx 16 \text{ mb} \bigg[\frac{1\text{GeV}}{p_i} \bigg] \bigg[\frac{1+C}{2} \bigg]^2 \\ &\qquad \times |F(q^2)|^2, \end{split}$$

A. Sibirtsev & M.B. Voloshin, PRD 71, 076005(2005)