J $/ \psi$-N interaction and J / ψ - nuclei

R. Seki (CSUN)

High-energy hadron physics with hadron beams
KEK, January 8, 2010
0. Quark masses. Lightest charmed mesons.

1. The case of the $\mathrm{D} \cdot \mathrm{bar}-\mathrm{N}$ interaction.
2. J / ψ and $\mathrm{J} / \psi-\mathrm{N}$ mass spectrum, and J / ψ size.
3. J/ $/ 4-\mathrm{N}$ interaction
4. J/ ψ production (brief)
5. J/ ψ nuclei (brief)
6. Nuclear interaction of the excited c-c•bar mesons (brief)

Quark masses*

$$
\begin{gathered}
\mathrm{m}_{\mathrm{u}} \approx 1.5 \sim 3.3 \mathrm{MeV} \\
\mathrm{~m}_{\mathrm{d}} \approx 3.5 \sim 6.0 \mathrm{MeV} \\
\mathrm{~m}_{\mathrm{s}} \approx 66 \sim 126 \mathrm{MeV} \\
\mathrm{~m} \geqslant \Lambda_{\mathrm{QCD}} \approx(1 \sim 4) \cdot 100 \mathrm{MeV}: \\
\text { perturbative treatments of } \mathrm{m}_{\mathrm{q}} \text { become possible } \\
\rightarrow \text { Effective field theoretical (EFT) treatments of QCD } \\
\text { (even nonrelativistic QCD) become possible** }
\end{gathered}
$$

$$
\mathrm{m}_{\mathrm{c}} \approx 1.16 \sim 1.34 \mathrm{GeV}
$$

*PDF: The u-, d-, and s-quark masses are estimates of so-called \current-quark masses," in a mass- independent subtraction scheme such as MS. The ratios $\mathrm{mu} / \mathrm{md}$ and $\mathrm{ms} / \mathrm{md}$ are extracted from pion and kaon masses using chiral symmetry. The estimates of d and u masses are not without controversy and remain under active investigation. Within the literature there are even suggestions that the u quark could be essentially massless. The s-quark mass is estimated from $\mathrm{SU}(3)$ splittings in hadron masses. We have normalized the MS masses at a renormalization scale of ${ }^{1}=2 \mathrm{GeV}$. Results quoted in the literature at ${ }^{1}=1 \mathrm{GeV}$ have been rescaled by dividing by 1:35.
${ }^{* *} c f$. N. Brambilla \& A. Vairo, Rev. Mod. Phys. 77, 1423 (2005).

Lightest charmed mesons

(Lightest) charmed mesons: $\quad \Gamma \approx 10^{-4} \mathrm{eV}$.

$$
\mathrm{m}_{\mathrm{c}}+\mathrm{m}_{\mathrm{d}} \approx 1.2 \mathrm{GeV}
$$

$$
D^{+}(\mathrm{c} \underline{d}), \mathrm{D}^{0}(\mathrm{c} \underline{\mathrm{u}}), \mathrm{D}^{--}(\underline{\mathrm{c}} \mathrm{~d}), \underline{D}^{0}(\underline{\mathrm{c}} \mathrm{u}): \mathrm{I}\left(\mathrm{~J}^{\mathrm{P}}\right)=1 / 2\left(0^{--}\right), \quad \mathrm{m}_{\mathrm{D}} \approx 1.87 \mathrm{GeV}
$$

$$
\mathrm{D}_{\mathrm{s}}^{+}(\mathrm{c} \underline{s}), \mathrm{D}^{--}(\underline{\mathrm{c}} \mathrm{~s}) \quad: \mathrm{I}\left(\mathrm{~J}^{\mathrm{P}}\right)=0\left(0^{--}\right), \quad \mathrm{m}_{\mathrm{Ds}} \approx 1.97 \mathrm{GeV}
$$

(Lightest) $\mathrm{C} \underline{C}$ mesons: $\mathrm{C} \underline{C}$ in 1 S states.

	$2 \mathrm{~m}_{\mathrm{c}} \approx 2.3 \sim 2.7 \mathrm{GeV}$
$\eta_{\mathrm{c}}(\mathrm{c} \underline{\mathrm{c}}):$	$\mathrm{I}\left(\mathrm{J}^{\mathrm{P}}\right)=0\left(0^{--}\right), \quad \mathrm{m}_{\eta \mathrm{c}} \approx 2.98 \mathrm{GeV}, \quad \Gamma \approx 27 \mathrm{MeV}$
$\mathrm{J} / \psi(\mathrm{c} \underline{\mathrm{c}}):$	$\mathrm{I}\left(\mathrm{J}^{\mathrm{P}}\right)=0\left(1^{--}\right), \quad \mathrm{m}_{\mathrm{J} / 4} \approx 3.10 \mathrm{MeV}, \quad \Gamma \approx 93 \mathrm{eV}$

Note: $2 \mathrm{~m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}} \approx 6.5 \sim 13 \mathrm{MeV}$, while $\mathrm{M}_{\mathrm{p}} \approx 938.3 \mathrm{MeV}$.

1. The case of $\mathrm{D} \cdot \mathrm{bar}-\mathrm{N}$ interaction

Attractive. Probably strong enough to form D-N bound states.

One π-exchange interaction: S.Yasui \& K.Sudoh, PRD(2009).
Bound state: $\mathrm{I}=0$ and $\mathrm{J}^{\mathrm{P}}=1 / 2^{-}$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{B}}=1.4 \mathrm{MeV} \rightarrow \mathrm{a}=+4.7 \mathrm{fm} \\
& \text { and } \mathrm{R}=3.8 \mathrm{fm}
\end{aligned}
$$

with the coupled channels of

$$
\mathrm{m}_{\underline{D^{0}}}-\mathrm{m}_{\mathrm{D}}{ }^{-} \approx 5 \mathrm{MeV}
$$

$$
|\bar{D} N\rangle=c_{0}^{D}\left(\left|D^{-} p\right\rangle-\left|\bar{D}^{0} n\right\rangle\right)+c_{1}^{D}\left(\left|D^{*-} p\right\rangle-\left|\bar{D}^{* 0} n\right\rangle\right)
$$

$\rightarrow \mathrm{D}$-bar nuclear bound sates:
Coupled atomic + nuclear bound states of charmed mesons with the meson-nucleon bound-states of $\mathrm{I}=0$ and $\mathrm{J}^{\mathrm{P}}=1 / 2^{-}$
\rightarrow nuclear shell structure possibly destroyed?
But hold the horse.

Quark-meson coupling model: (Guichon, Fleck-Benz-Shimizu-Yazaki,Saito-Thomas)
\rightarrow K.Saito, K.Tsushima, A.W.Thomas, PPNP(2007):
Non-interacting N bag model in Rel. Mean Field (QHD) model, σ, ω, ρ coupling to $\mathrm{q}, \mathrm{Q}, \sim$ self-consistintly at the N and nuclear levels.
Tsushima,Lu,Thomas,Saito,Landau, PRC(1999)
$D \cdot$ bar mass shift at \sim nuclear matter (at the center of Pb): $\delta \mathrm{m}_{\underline{D}} \approx-45 \mathrm{MeV}$

QCD sum rule: A.Hayashigaki, $\operatorname{PLB}(2000)$ on D , noting $\quad \delta \mathrm{m}_{\mathrm{D}} \approx \delta \mathrm{m}_{\underline{D}} \approx-50 \mathrm{MeV}$

Yasui - Sudoh DN scattering length roughly corresponds to:

$$
\begin{aligned}
\mathrm{a}=+4.7 \mathrm{fm} \rightarrow \delta \mathrm{~m}_{\mathrm{D}}= & -17.4 \mathrm{MeV}(\Lambda=1.27 \mathrm{GeV}) \\
& -22.4 \mathrm{MeV}(\Lambda=1.00 \mathrm{GeV})
\end{aligned}
$$

However, at the LO meson-baryon interaction,

Chiral $\mathrm{SU}(3) \rightarrow \mathrm{SU}(4)$ model:
A.Mishra, Bratkovskaya,Shaffer-Bielich,Schramm,Stöcker, PRC(2004)

$$
\delta \mathrm{m}_{\underline{D}}=\text { even down to } \sim-150 \mathrm{MeV}
$$

Hofmann-Lutz (coupled-equation) model:
Includes all $\mathrm{J}^{\mathrm{P}}=1 / 2^{-}$pseudoscalar-baryon states consisting of $\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}$ with s-wave interactions using the universal vector coupling strength:
M.F.M.Lutz \& C.L.Korpa,PL(2006); J.Hofmann \& Lutz,NPA(2005)

$$
\delta \mathrm{m}_{\underline{D}}=+17 \mathrm{MeV}
$$

Strong coupling of various channels makes the strength of the D-N interaction much uncertain.
M.B. Voloshin / Progress in Particle and Nuclear Physics 61 (2008) 455-511 C-C.bar meson mass spectrum

2. J / ψ and $\mathrm{J} / \psi-\mathrm{N}$ mass spectrum, and J / ψ size
$\mathrm{J} / \psi(1 \mathrm{~s}):$
$\mathrm{I}=0, \mathrm{G}=-, \mathrm{J}=1, \mathrm{PC}=--$
$\mathrm{M}=3097 \mathrm{MeV}$,
$\Gamma=0.093 \mathrm{MeV}$

Like $\phi(1020)$ of s s•bar but with $\Gamma=4.3 \mathrm{MeV}$ Decaying to K's.
$\eta_{\mathrm{c}}(1 \mathrm{~s}):$
$\Gamma=27 \mathrm{MeV}$
May not be pure c c•bar?
$\mathrm{N}+\mathrm{J} / \psi$ couples little to other hadronic channels: J / ψ have a lonely life with N .

1) The J / ψ mass is below the D - D •bar mass by more than 60 MeV .
2) The proton - J / ψ mass is below the Λ_{c} - $\mathrm{D} \cdot$ bar mass by about 120 MeV :

$$
\begin{aligned}
& \text { Mass }\left(\Lambda_{\mathrm{c}}+\text { Dbar }\right) \approx 4.1561 \pm 0.0002 \mathrm{GeV} \\
& \operatorname{Mass}(\mathrm{p}+\mathrm{J} / \psi) \quad \approx 4.0352 \pm 0.0001 \mathrm{GeV}
\end{aligned}
$$

All other OZI-allowed hadronic states with the same quantum number of $\mathrm{N}+\mathrm{J} / \psi$ have higher masses.
3) The J / ψ mass is above the $\eta_{\mathrm{c}}(1 \mathrm{~s})$ mass by 117 MeV , but a transition to $\eta_{\mathrm{c}}(1 \mathrm{~s})$ involves a spin flip of cor cbar. Because of the large mass, the transition is expected to be rare.
4) Coupling to OZI-non-allowed channels is expected to be small: S.J. Brodsky \& G. A. Miller, PL B412, 125 (1997).

* $\mathrm{N}+\mathrm{J} / \psi \rightarrow \mathrm{N}+\mathrm{J} / \psi+\pi+\pi \quad$ Isospin allowed via two-pion exchanges but down by the order of

$$
\left(\mathrm{m}_{\pi} / 4 \pi \mathrm{f}_{\pi}\right)^{2} \approx 1 \%
$$

* $\mathrm{J} / \psi \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-} \quad 5.94 \pm 0.06 \%$
$\mu^{+}+\mu^{-} \quad 5.93 \pm 0.06 \%$
$\rho+\pi \quad 1.69 \pm 0.15 \%$: the largest two-body hadronic branching ratio ($\rho \pi$ puzzle: ρ has c-cbar component?)
but $\mathrm{N}+\mathrm{J} / \psi \rightarrow(\mathrm{N}+\rho+\pi) \rightarrow \mathrm{N}+\mathrm{J} / \psi$ unlikely with the order of $10^{-4} \%$ interaction strength.
* Also $\mathrm{N}+\mathrm{J} / \psi \rightarrow(\mathrm{N}+\mathrm{D}+\mathrm{D} \cdot$ bar $) \rightarrow \mathrm{N}+\mathrm{J} / \psi$ unlikely with about 0.4% interaction strength.

J / ψ is small:

At short distances, the non-relativistic C and $\mathrm{C} \cdot \mathrm{bar}$ in J / ψ interact through the color singlet $\left(\mathrm{P}_{0}\right)$ part of the Coulombic potential

$$
V(r)=-\frac{4}{3} \frac{\alpha_{s}(1 / r)}{r} P_{0}+\frac{2}{3} \frac{\alpha_{s}(1 / r)}{r} P_{8} .
$$

The Bohr radius of this C-C•bar bound state is

$$
\mathrm{a}_{\mathrm{o}}=(3 / 2)\left[\mathrm{m}_{\mathrm{c}} \alpha_{\mathrm{s}}\left(1 / \mathrm{a}_{0}\right)\right]^{-1} .
$$

Numerically

$$
\begin{aligned}
\alpha_{\mathrm{s}}\left(\Lambda_{\mathrm{Q}}\right) & \approx 0.5 \sim 0.6
\end{aligned} \quad\left[\alpha_{\mathrm{s}}(\mathrm{q})=\mathrm{g}(\mathrm{q})^{2} / 4 \pi\right] ~ 子 \mathrm{a}_{0} \approx 0.3 \mathrm{fm} \quad\left(1 / \mathrm{a}_{0} \equiv \Lambda_{\mathrm{Q}} \approx 0.75 \sim 0.64 \mathrm{GeV}\right)
$$

N.B. $\Lambda_{\mathrm{Q}} \equiv 1 / \mathrm{a}_{0}$.

Note: $-4 / 3=t_{1}{ }^{a} \cdot t_{2}{ }^{a}$ for the color singlet pair.

4. J/ $\psi-\mathrm{N}$ interaction is definitely attractive

 through QCD van der Waals (two gluon exchange) interaction:The $J / \psi-\mathrm{N}$ amplitude at the threshold in Born approximation is expressed in the second order of the color dipole coupling $\hat{H}_{\mathrm{int}}=-\left(\mathrm{t}_{1}{ }^{\mathrm{a}}-\mathrm{t}_{2}{ }^{\mathrm{a}}\right) \mathbf{r} \cdot \mathbf{E}^{\mathrm{a}}$:

Here,

$$
\begin{aligned}
f_{\mathrm{B}}= & -\frac{m_{\mathrm{red}}}{2 \pi} \frac{2 \pi}{3} \alpha_{s}\langle\varphi| r^{i} \frac{1}{H^{(8)}+\epsilon} r^{j}|\varphi\rangle\left\langle K_{2}\right| E_{i}^{a} E_{j}^{a}\left|K_{1}\right\rangle_{\mathrm{N}\left(K_{1}=K_{2}\right)} \\
& =-\frac{m_{\mathrm{red}}}{2 \pi}, 4 \alpha_{\mathrm{J} / \psi}\left\langle\frac{1}{2} \mathbf{E}_{a} \cdot \mathbf{E}_{a}\right\rangle \mathrm{N}
\end{aligned}
$$

J / ψ chromo-polarizability: $\alpha_{\mathrm{J} / \psi} \approx \mathrm{d}_{2} \mathrm{a}_{0}{ }^{3} / 4 \quad\left[\mathrm{~d}_{2}=7 \cdot(4 \pi / 27)\right.$, Wilson coefficient (1S); $\mathrm{c}-\mathrm{c} \cdot \mathrm{bar}$ octet state propagator: $\left(\mathrm{H}^{(8)}+\varepsilon\right)^{-1}$.
(Peskin, $\mathrm{N}_{\mathrm{c}} \rightarrow \infty$)]
f_{B} is expressed in the forms of multi-pole expansion*, of operator product expansion, and (QCD) EFT/HQ formulation **
*K.Gottfried (1978), M.B.Voloshin (1979),M.Peshkin (1979); G.Bhanot \& Peshkin (1979), T.M.Yan (1980), A.B.Kaidalov \& P.E.Volkovitsky (1992).
${ }^{* *}$ M. Luke, A. V. Manohar, \& M. J. Savage (1992), S.J.Brodsky and G. A. Miller (1997).

Approximation (thus the source of uncertainties) on the two major factors evaluated at Λ_{Q} :

1) The J/ ψ chromo-polarizability:

$$
\begin{aligned}
\alpha_{\mathrm{J} / \psi} & \approx \mathrm{d}_{2} \mathrm{a}_{0}^{3} / 4 \approx 0.9 \mathrm{GeV}^{-3} \\
& \approx 2.0 \mathrm{GeV}^{-3} \text { and up }
\end{aligned} \quad\left(\mathrm{N}_{\mathrm{c}} \rightarrow \infty ; \text { M.Peshkin }(1979)\right)
$$

2) The N matrix element of the gluon operator:

$$
\begin{aligned}
& \left\langle 1 / 2 \mathbf{E}^{\mathrm{a}} \cdot \mathbf{E}^{\mathrm{a}}\right\rangle_{\mathrm{N}} \approx\left(4 \pi^{2} / 9\right)\left\langle\mathrm{T}_{\mu}{ }^{\mu}\right\rangle_{\mathrm{N}}+2 \pi \alpha_{\mathrm{s}}\left(1 / \mathrm{a}_{0}\right)\left\langle\mathrm{T}_{\mathrm{G}}{ }^{00}\right\rangle \\
& \approx\left(3 \mathrm{~V}_{2} / 8+\pi / 9 \alpha_{\mathrm{s}}\right) \mathrm{m}_{\mathrm{N}} \approx \mathrm{~m}_{\mathrm{N}} \\
& \quad \text { Here, } \mathrm{T}\left(\Lambda_{\mathrm{Q}}\right)=\text { the energy-momentum tensor } \\
& \quad \mathrm{V}_{2}\left(\Lambda_{\mathrm{Q}}\right) \approx 0.5 \text {, the gluon momentum fraction in } \mathrm{N}
\end{aligned}
$$

Note, however, neglect of the second term (formally in NLO) leads to

$$
\approx(1 / 4) \mathrm{m}_{\mathrm{N}} \quad \text { (A.B.Kaidalov \& P.E.Volkovitsky(1992)) }
$$

So, we have found the Born approximation of the $\mathrm{J} / \psi-\mathrm{N}$ scattering amplitude at the threshold. It is

$$
a_{j / \psi}^{B}=2 m_{\text {red }} \int d^{3} r V(r)
$$

in terms of the local $\mathrm{J} / \psi-\mathrm{N}$ potential $\mathrm{V}(\mathrm{r})$.
By writing

$$
V(r)=V_{0} \cdot\left[V_{N} \delta^{3}(r)\right]=\delta m\left[V_{N} \delta^{3}(r)\right]
$$

obtain

$$
\delta m=\frac{a_{j / \psi}^{B}}{2 m_{\text {red }}} \frac{1}{V_{N}} \rightarrow \frac{a_{j / \psi}^{B}}{2 m_{\text {red }}} \rho_{0} \quad \text { with } \rho_{0}=0.172 \mathrm{fm}^{-3}
$$

by neglecting the Fermi motion and possible modification of $\mathrm{V}(\mathrm{r})$ in the presence of other nucleons.
$\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}{ }^{\mathrm{B}} \rightarrow \mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}$ or $\sigma_{\mathrm{J} / \psi}$ is a different matter.

1) Assume the form of $V(r): V(r)=V_{0} \exp \left(-r^{2} / R^{2}\right)$

$$
\begin{aligned}
& \mathrm{R} \sim \text { the nucleon size, } 0.8 \mathrm{fm} \text { (Brodsky \& Miller, 1997) } \\
& \mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}} \mathrm{~B}=-0.19 \mathrm{fm} \rightarrow \quad \mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}=-0.24 \mathrm{fm} \text { by solving } \mathrm{Sch} \text {. Eq. }
\end{aligned}
$$

2) Apply the LO NR $J / \psi-\mathrm{N}$ EFT:

$$
V(r)=\frac{\pi^{2}}{m_{r e d} \Lambda} c_{0}(\Lambda) \delta^{3}(r)
$$

Since $\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}} \mathrm{B}^{\mathrm{B}}=\frac{\pi}{2 \Lambda} c_{0}(\Lambda), \quad \mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}=\left(\frac{1}{a_{j / \psi}^{B}}+\frac{\Lambda}{\pi}\right)^{-1}=-0.22 \mathrm{fm}$ for $\Lambda=1 / \mathrm{R}=0.25 \mathrm{GeV}$

The EFT treatment reveals the regularization dependence of $\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}{ }^{\mathrm{B}}$,
$\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}{ }^{\mathrm{B}}=\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}{ }^{\mathrm{B}}(\Lambda)$, or the intrinsic ambiguity with $\delta \mathrm{m}$:
For the J / ψ scattering amplitude, write

$$
V_{N} \delta^{3}(r)=\frac{1}{\Lambda^{3}} \delta^{3}(r) \quad \text { in } \quad V(r)=V_{0} \cdot\left[V_{N} \delta^{3}(r)\right]=\delta m\left[V_{N} \delta^{3}(r)\right]
$$

The point is simply that $\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}$ is an observable and independent of Λ, but $\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}{ }^{\mathrm{B}}$ is not.

The difference between $\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}$ and $\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}{ }^{\mathrm{B}}$ in our $\mathrm{J} / \psi-\mathrm{N}$ case is expected to be small as the interaction being weak:

$$
\begin{aligned}
\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}{ }^{\mathrm{B}}=-0.19 \mathrm{fm} \rightarrow \mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}} & =-0.24 \mathrm{fm} \quad \text { (Brodsky \& Miller, 1997) } \\
& =-0.22 \mathrm{fm} \quad(\text { EFT, R.S. })
\end{aligned}
$$

$\delta \mathrm{m}(\mathrm{MeV})$ and the spin-averaged $\mathrm{a}_{\mathrm{J} / \psi-\mathrm{N}}(\mathrm{fm})$ calculations (All with $\left.\sim\right)$: pQCD

```
\(-(8 \sim 11)\)
    \(-0.24\)
    Luke,Manohar \& Savage (1992)
    Brodsky,Miller (1997)
    \(-8 \pm 3 \quad\) Lee,Ko (2003)
    -11 -0.2 deTeramond,Epinoza, \& Ortega-Rodriguez (1998)*
    -3 -0.06 Kaidalov \& Volkovitsky(1992)
    \(\leq-21\)
```

 Sum rule
 \(-7 \quad-0.2 \quad\) Klingl,Kim,Lee,Morath, Weise,(1999)
 $-(4 \sim 7) \quad \approx-0.1$
Hayashigaki(1999)

Lattice**

$$
\text { - 0.71 } \pm 0.48 \quad \text { Yokokawa,Sasaki,Hatsuda,Hayashigaki(2006) }
$$

exp. analysis

$$
\begin{array}{ccc}
& \sim 0.1 \text { (magnitude) } & (\gamma \text { prod. }) \text { Hüfner et al.(2000) } \\
-11 & -0.2 & *\left(\mathrm{p}-\mathrm{p} \mathrm{~A}_{\mathrm{NN}}\right)
\end{array}
$$

**A new, more precise lattice calculation is underway (private comm. S. Sasaki)

4. J/ ψ production

- p-bar $\mathrm{p} \rightarrow \pi^{0} \mathrm{~J} / \psi$ cross sections from $\mathrm{J} / \psi \rightarrow \mathrm{p}$-bar $\mathrm{p} \pi^{0}$

FIG. 4. Theoretical and experimental cross sections for $p \bar{p} \rightarrow$ $\pi^{0} J / \psi$. The theoretical predictions are the constant amplitude result Eq. (7) (solid) and the range of PCAC cross sections, from Eq. (8) (filled). The experimental points are from E760 [9].
A.Lundborg,T.Barnes,U.Wiedner,PRD73,096003(2006).

Some possible experiments

TABLE II. Kinematics for the production of η_{c}-nucleus bound states. All quantities are given in GeV .

Process	ϵ	$p_{\text {c.m. }}$	$p_{1}^{\text {lab }}$
$\gamma^{3} \mathrm{He} \rightarrow\left({ }^{3} \mathrm{He} \eta_{c}\right)$	0.020	2.20	4.52
$p d \rightarrow\left({ }^{3} \mathrm{He} \eta_{c}\right)$	0.020	2.48	7.64
$\bar{p}^{4} \mathrm{He} \rightarrow\left({ }^{3} \mathrm{H} \eta_{c}\right)$	0.020	1.48	2.30
$\gamma^{4} \mathrm{He} \rightarrow\left({ }^{4} \mathrm{He} \eta_{c}\right)$	0.120	2.24	3.96
$n^{3} \mathrm{He} \rightarrow\left({ }^{4} \mathrm{He} \eta_{c}\right)$	0.120	2.60	6.09
$d d \rightarrow\left({ }^{4} \mathrm{He} \eta_{c}\right)$	0.120	2.71	9.51

S.J.Brodsky, I.Schmidt, \& G.F.deTeramond, PRL 64, 1011(1990)
$\pi^{+} d \rightarrow J / \psi p_{1} p_{2} \quad$ S.J.Brodsky \& G.A.Miller, PLB 412, 125 (1997)
$\mathrm{p} \cdot$ bar $^{4} \mathrm{He} \rightarrow \pi$ (all charges) + 3nucleons $_{\mathrm{J} / \psi}$

5. J/ ψ-nuclei

How attractive is the nuclear interaction to form a bound state with nuclei?:

A simple estimate

For a mass μ particle in a square-well potential V of the radius R :

$$
V \leq-\frac{1}{2 \mu}\left(\frac{\pi}{2 R}\right)^{2}
$$

The equality is for the unitary limit $\left(\mathrm{E}_{\mathrm{B}}=0\right)$.
Let's

$$
R=(1.12 \mathrm{fm}) A^{1 / 3}=\left(\frac{3}{4 \pi \rho_{o}}\right)^{1 / 3} A^{1 / 3} \quad \text { with } \rho_{o}=0.172 \mathrm{fm}^{-3}
$$

We get

$$
\begin{aligned}
\mathrm{V} & \leq-(20.4 \mathrm{MeV}) \mathrm{A}^{-2 / 3} & \text { for } \mu=\mathrm{m}_{\underline{\mathrm{D}}} \approx 1.87 \mathrm{GeV} \\
& \leq-(12.3 \mathrm{MeV}) \mathrm{A}^{-2 / 3} & \text { for } \mu=\mathrm{m}_{\mathrm{J} / 4} \approx 3.10 \mathrm{GeV}
\end{aligned}
$$

J/ ψ-nucleus folded potential

The approximation is

$$
V_{J / \psi-A}(r) \approx \int d^{3} r^{\prime} V_{J / \psi-N}\left(r-r^{\prime}\right) \rho_{A}\left(r^{\prime}\right) .
$$

If the J / ψ interaction is weak, the standard "lowest-order impulse approximation" in nuclear physics is

$$
V_{J / \psi-A}(r)=\frac{2 \pi}{m_{r e d}} a_{J / \psi-N} \rho_{A}(r) .
$$

Note that if the interaction should be strong enough to form a bound state, $\mathrm{a}_{\mathrm{J} / \psi}$ diverges and then changes its sign, $-\rightarrow+$, as the strength increases.
$\mathrm{a}_{\mathrm{J} / \psi} \rightarrow \pm \infty$ diverges; $\sigma_{\mathrm{J} / \psi} \rightarrow \infty$ unless inelastic process also occurs.

J / ψ nuclei using folded potentials

* Nuclear-Bound Quarkonium, S.J.Brodsky, I.Schmidt, \& G.F.deTeramond,PRL(1990). Comment: D.A.Wasson, PRL(1991).
* Heavy-Quarkonia interactions with nucleons and nuclei,
A.B.Kaidalov \& P.E.Volkovitsky, PRL(1992)
* Is J/ ψ-nucleon scattering dominated by the gluonic van der Waals interaction?
S.J.Brodsky \& G.A.Miller, PLB(1997)
* Proton-proton spin correlations at charm threshold and quarkonium bound to nuclei , G.F.deTeramond, R.Espinoza, \& M.Ortega-Rodriguez, PRD(1998).

Quark-meson coupling model

* Nucleon and hadron structure changes in the nuclear medium and the impact on observables, K.Sato, K.Ysushima, \& A.W.Thomas, PPNP(2007).
* Binding of D,D and J/4 mesons in nuclei, K.Tsushima, arXiv:0907.0244v1 [nucl-th].

New nuclear structure with J / ψ ?

A small ($0.2 \sim 0.3 \mathrm{fm}$), heavy $\left(\sim 3 \mathrm{~m}_{\mathrm{N}}\right)$, spin 1 and negative parity J / ψ placed in a nucleus with

$$
\mathrm{v}_{\mathrm{N}}>\mathrm{v}_{\mathrm{J} / \psi}: \sim \text { Nucleons move around } \mathrm{J} / \psi \text { (Born-Oppenheimer) }
$$

For example, a J / ψ would sit in the middle of four nucleons in ${ }^{4} \mathrm{He}_{\mathrm{J} / \psi}$, squeezing the ${ }^{4} \mathrm{He}$ structure, while the nuclear ompressibility coefficient is

$$
\mathrm{b}_{\text {comp }} \equiv \rho^{2} \partial^{2}(\mathrm{E} / \mathrm{A}) / \partial \rho^{2} \equiv \mathrm{~K} / 9 \approx 13 \mathrm{MeV} .
$$

The spin/parity 1^{-}: Effects on shell structure in heavier nuclei?

The real picture depends on the magnitude of $\mathrm{V}_{\mathrm{J} / 4-\mathrm{N}}, \mathrm{E}_{\mathrm{B}, \mathrm{J} / \psi}$,

$$
\text { and K.E. }{ }_{\mathrm{J} / \psi}=\mathrm{V}_{\mathrm{J} / \psi-\mathrm{N}}+\mathrm{E}_{\mathrm{B}, \mathrm{~J} / \psi} .
$$

6. NLO effect and nuclear interaction of the excited c-c•bar mesons

TABLE 1. Charmonium Mass shift in nuclear matter in MeV

Charmonium	$J^{P C}$	QCD 2nd order Stark Effect	QCD sum rules	Effects of $D \bar{D}$ loop
η_{c}	0^{-+}	-8 MeV	-5 MeV	No effect
J / ψ	1^{--}	-8 MeV	-7 MeV	$<2 \mathrm{MeV}$
$\chi_{0,1,2}$	$0,1,2^{++}$	-40 MeV	-60 MeV	No effect on χ_{1}
$\psi(3686)$	1^{--}	-100 MeV		$<30 \mathrm{MeV}$
$\psi(3770)$	1^{--}	-140 MeV		$<40 \mathrm{MeV}$

S.H.Lee, arXiv:nucl-th/0310080
T.Song \& S. H. Lee, PRD 72, 034002 (2005).

The issue of the coupling to other channels including inelastic ones.

Strong coupling of ψ ' to J / ψ

$$
\begin{aligned}
V_{\psi^{\prime}} \approx & -21 \mathrm{MeV} \times\left[\frac{1+C}{2} \frac{\alpha_{\psi^{\prime}}}{2 \mathrm{GeV}^{-3}}\right] \\
\Gamma_{\psi^{\prime} J / \psi}= & \left|\mathcal{T}_{\psi^{\prime} J / \psi}\right|^{2} \frac{p_{f}}{32 \pi\left(M_{\psi^{\prime}}+m_{N}\right) M_{\psi^{\prime}} m_{N}} \rho_{N} \\
\approx & \left.70 \mathrm{MeV}\left[\frac{1+C}{2}\right]^{2} \frac{\left[\alpha_{\psi^{\prime}}\right.}{2 \mathrm{GeV}^{-3}}\right]^{2}\left|F\left(q^{2}\right)\right|^{2} \\
\sigma\left(\psi^{\prime}+N \rightarrow J / \psi+N\right)= & \frac{1}{p_{i}} \frac{\left|\mathcal{T}_{\psi^{\prime} J / \psi}\right|^{2} p_{f}}{16 \pi\left(M_{\psi^{\prime}}+m_{N}\right)^{2}} \\
\approx & 16 \mathrm{mb}\left[\frac{1 \mathrm{GeV}}{p_{i}}\right]\left[\frac{1+C}{2}\right]^{2} \\
& \times\left|F\left(q^{2}\right)\right|^{2},
\end{aligned}
$$

A. Sibirtsev \& M.B.Voloshin, PRD 71, 076005(2005)

