Short-range NN and YN interactions in the SU_6 quark model

C. Nakamoto (Suzuka College of Technology)

Y. Fujiwara (Kyoto University)

Y. Suzuki (Niigata University)

M. Kohno (Kyushu Dental College)

- 1. Introduction
- 2. Characteristic feature of a quark model
- 3. Realistic B_8B_8 interaction in the SU_6 quark model
- 4. Results and discussion
- 5. Summary

Y. Fujiwara, Y. Suzuki and C. N., PPNP58 (2007) 439-520.

1. Introduction

Quarks and Baryons

These three quarks are regarded as the identical particles with the different quantum numbers \Rightarrow Flavor-SU(3) symmetry

If we assume that the flavor-SU(3) symmetry is satisfied completely, the information of all B_8B_8 systems are included in these 6-components !

B_8B_8 systems

isospin basis

particle basis

• *NN*(0), *NN*(1)

□ *ΛN*(1/2)

 $\Box \Sigma N(1/2), \Sigma N(3/2)$

□ ΛΛ(0)

□ Ξ*N*(0), Ξ*N*(1)

□ ΣΛ**(1)**

 $\Box \Sigma\Sigma(0), \Sigma\Sigma(1), \Sigma\Sigma(2)$

□ ΞΛ(1/2) □ ΞΣ(1/2), ΞΣ(3/2)

 $\Xi\Xi(0), \ \Xi\Xi(1)$

• pp, np, nn $\Box \Lambda p, \Lambda n$ $\Box \Sigma^+ p, \Sigma^+ n, \Sigma^0 p, \Sigma^0 n, \Sigma^- p, \Sigma^- n$ $\square \Lambda \Lambda$ $\Box \Xi^{0}p, \Xi^{0}n, \Xi^{-}p, \Xi^{-}n$ $\Box \Sigma^+\Lambda, \Sigma^0\Lambda, \Sigma^-\Lambda$ $\Sigma^+\Sigma^+, \Sigma^+\Sigma^0, \Sigma^+\Sigma^-, \Sigma^0\Sigma^0, \Sigma^0\Sigma^-, \Sigma^-\Sigma^ \Box \Xi^0 \Lambda, \Xi^- \Lambda$ $\Xi^{0}\Sigma^{+}, \Xi^{0}\Sigma^{0}, \Xi^{0}\Sigma^{-}, \Xi^{-}\Sigma^{+}, \Xi^{-}\Sigma^{0}, \Xi^{-}\Sigma^{-}$ \Box $\Xi^{0}\Xi^{0}, \Xi^{0}\Xi^{-}, \Xi^{-}\Xi^{-}$

SU(2): Coupling of two spin-states

$$\phi_{S_1S_{1z}}\phi_{S_2S_{2z}} = \sum_{SS_z} \langle S_1S_{1z}S_2S_{2z}|SS_z \rangle [\phi_{S_1}\phi_{S_2}]_{SS_z}$$

$$\square Clebsch-Gordan \ coefficient$$

SU(3): Coupling of two flavor-states

e.g.
$$[\Lambda N]_{\frac{1}{2}I_z}^{\mathcal{P}=+1} = \sqrt{2}\langle (11)00(11) - 3\frac{1}{2} \parallel (22) - 3\frac{1}{2} \rangle [B_{(11)}B_{(11)}]_{(22)-3\frac{1}{2}I_z}$$

 $+\sqrt{2}\langle (11)00(11) - 3\frac{1}{2} \parallel (11) - 3\frac{1}{2} \rangle_{\rho=2} [B_{(11)}B_{(11)}]_{(11)-3\frac{1}{2}I_z}$
 $= \frac{1}{\sqrt{10}} [B_{(11)}B_{(11)}]_{(22)-3\frac{1}{2}I_z} + \frac{3}{\sqrt{10}} [B_{(11)}B_{(11)}]_{(11)-3\frac{1}{2}I_z}$

25SEP2009

 B_8B_8 systems classified in the SU_3 states with (λ, μ)

	S	B ₈ B ₈ (I)	¹ E, ³ O (P=symmetric)	³ E, ¹ O (P=unsymmetric)
	0	NN(0)		(03)
	0	NN(1)	(22)	—
ſ	-1	ΛΝ	$\frac{1}{\sqrt{10}}$ [(11) _s +3(22)]	$\frac{1}{\sqrt{2}}$ [-(11) _a +(03)]
		ΣN(1/2)	$\frac{1}{\sqrt{10}}$ [3(11) _S -(22)]	$\frac{1}{\sqrt{2}}$ [(11) _a +(03)]
		ΣN(3/2)	(22)	(30)
	-2	ΛΛ	$\frac{1}{\sqrt{5}}(11)_{\rm S} + \frac{9}{2\sqrt{30}}(22) + \frac{1}{2\sqrt{2}}(00)$	
		ΞN(0)	$\frac{1}{\sqrt{5}}(11)_{\rm S} - \sqrt{\frac{3}{10}}(22) + \frac{1}{\sqrt{2}}(00)$	(11) _a
		ΞN(1)	$\sqrt{\frac{3}{5}}(11)_{\rm S} + \sqrt{\frac{2}{5}}(22)$	$\frac{1}{\sqrt{3}}[-(11)_{a}+(30)+(03)]$
		ΣΛ	$-\sqrt{\frac{2}{5}(11)}$ + $\sqrt{\frac{3}{5}}$ (22)	$\frac{1}{\sqrt{2}}$ [(30)-(03)]
		$\Sigma\Sigma(0)$	$\sqrt{\frac{3}{5}(11)}_{\rm S} - \frac{1}{2\sqrt{10}}$ (22) $-\sqrt{\frac{3}{8}}$ (00)	
		$\Sigma\Sigma(1)$	—	$\frac{1}{\sqrt{6}}[2(11)_{a} + (30) + (03)]$
		$\Sigma\Sigma(2)$	(22)	
	-3	ΞΛ	¹ √ ¹⁰ [(11) _s +3(22)]	$\frac{1}{\sqrt{2}}[-(11)_{a}+(30)]$
		$\Xi\Sigma(1/2)$	$\frac{1}{\sqrt{10}}$ [3(11) _s -(22)]	$\frac{1}{\sqrt{2}}$ [(11) _a +(30)]
		$\Xi\Sigma(3/2)$	(22)	(03)
	1	至王(0)		(30)
	-4	至王(1)	(22)	—
25	SEP20	09	SRC & T structure at J-PAR	<u> </u>

Advantage of the SU_6 quark model

- If the Hamiltonian for the baryon-baryon interaction is approximately SU(3)-singlet, the B_8B_8 interactions with the same flavor-symmetry ($\lambda\mu$) show the almost identical behavior for the states with the common spin-value.

We may expect to understand the YN and YY interactions from the realistic NN interaction !

I will talk as follows,

- General characteristic feature of a quark model
- Description of the realistic NN interaction in the SU₆ quark model (fss2 and FSS)

 \Rightarrow B_8B_8 interactions in the present model

2. Characteristic feature of a quark model

Quark Pauli effect

Baryon level

heterogeneous particles

We can see the quark-Pauli effect by introducing only the kinetic energy without any qq interaction S. Saito, PTP40 (1968) 893; 41(1969) 705 Quark level

		$\mathcal{P} = +1$		P = - 1		
state	(22)	(11) _s	(00)	(03)	(11) _a	(30)
eigen value	10/9	0	2	10/9	8/9	2/9
		↑ complete forbidden				↑ almost forbidden
S	B ₈ B ₈	$^{1}S(\mathcal{P} = +1)$		${}^{3}S(\mathcal{P}=-1)$		1
0	NN(I=0)			10/9]
U	NN(I=1)	10/9				1
-	ΛN	1		1		1
-1	Σ N(I=1/2)		/9	1		
	Σ N(I=3/2)	10/9		2/9		
-	$\wedge \wedge$	1]
	Ξ N(I=0)	4	/3	8/9		
	Ξ N(I=1)	4/9		20/27		
-2	ΣΛ	2/3		2/3		
	Σ <u>Σ</u> (I=0)	7/9				
	$\Sigma \Sigma (I=1)$			22/27		
	Σ Σ (I=2)	10/9]
	ΞΛ	1		5/9		
-3	$\Xi \Sigma (I=1/2)$	1/9		5/9		
	$\Xi \Sigma (I=3/2)$	10/9		10/9		
-4	Ξ Ξ (I=0)			2/9		
-4	Ξ Ξ (I=1)	10/9]

Normalization kernel in the single-channel systems with $(0s)^6$ configuration $\langle \xi^{SFC} | \mathcal{A} | \xi^{SFC} \rangle$

phase shifts given by solving the RGM equation only with the kinetic energy term, namely, no *qq* interaction

Indication of the quark-Pauli effect in the hypernuclear physics

$$\begin{split} \left| \Sigma N \left(I = \frac{1}{2} \right) {}^{1}S_{0} \right\rangle &= \frac{1}{\sqrt{10}} \left[3(11)_{s} - (22) \right] & \left| \Sigma N \left(I = \frac{3}{2} \right) {}^{3}S_{1} \right\rangle &= (30) \\ (11)_{s} : \text{Pauli forbidden state} \longrightarrow \Sigma N(1/2) {}^{1}S_{0}\text{-state (90\%)} \\ (30) : \text{almost Pauli forbidden state} \longrightarrow \Sigma N(3/2) {}^{3}S_{1}\text{-state} \\ & & & \\ & &$$

Any realistic *BB* interaction in the meson-exchange model generate the attractive Σ single-particle potential

others
$$\left|\Xi\Sigma\left(I=\frac{1}{2}\right){}^{1}S_{0}\right\rangle = \frac{1}{\sqrt{10}}\left[3\left(11\right)_{s}-(22)\right] \left[\Xi\Xi\left(I=0\right){}^{3}S_{1}\right\rangle = (30)$$

Color analogue of Fermi-Breit (FB) interaction Rujula et al. PRD12(1975)147

- the color analogue of FB interaction represents the one-gluon exchange potential (OGEP)
- All the contributions from the FB interaction are generated from the quark-exchange diagrams, since we assume color-singlet cluster wave-functions as the (3q)-(3q) system.

M. Oka and K. Yazaki, PL90B (1980) 41, PTP66 (1981) 556, 572

All contributions from the FB interaction are short-range interaction !

Short-range central repulsion

color-magnetic interaction

$$U_{ij}^{\rm CM} = -\frac{1}{4}\alpha_S(\lambda_i \cdot \lambda_j) \cdot \frac{\pi}{2} \left(\frac{1}{m_i^2} + \frac{1}{m_j^2} + \frac{4}{3m_i m_j} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j\right) \delta(r_{ij})$$

derives from the color analogue of FB interaction that represents the OGEP.

⇒ It generates the short-range repulsion in all flavor-SU(3) states except for the flavor-singlet (00) state
H - particle state
R. L. Jaffe, PRL38 (1977) 195, 617E

It may be interpreted qualitatively as the origin of well-known repulsive feature of the nuclear force at the high-energy region.

Large anti-symmetric LS force

spin-orbit (LS) term

$$-\frac{1}{4}\alpha_S(\lambda_i\cdot\lambda_j)\cdot\frac{1}{8}\cdot\frac{1}{r_{ij}^3}\left[r_{ij}\times(p_i-p_j)\right]\cdot\left\{\frac{1}{m_i^2}\sigma_i+\frac{1}{m_j^2}\sigma_j+\frac{2}{m_im_j}(\sigma_i+\sigma_j)\right\}$$

derives from the color analogue of FB interaction that represents the OGEP.

The YN interaction induces the channel coupling with spin-flip, for example, ${}^{1}P_{1}-{}^{3}P_{1}$ coupling, which is forbidden in the NN system. \Rightarrow due to $LS^{(-)}$ force (anti-symmetric spin-orbit force)

(Relatively small LS⁽⁻⁾ contribution from the meson-exchange model)

Quark model with FB interaction

Advantage

- (1) Quark Pauli effect
- (2) Short-range central repulsion
- (3) Large anti-symmetric LS force

[Short-range tensor force derived from FB interaction is weak.]

Defect

- (1) Missing of the medium-range attraction
- (2) Missing of the long-range spin-dependent force

Reason : no meson effect

Introduction of the effective meson exchange potential (EMEP) between quarks

3. Realistic B_8B_8 interaction in the SU_6 quark model (fss2, so-called Kyoto-Niigata model)

From qq interaction to BB interaction

g

BB interaction

 π
 $\rho, \omega, \sigma \cdots$

QCD characteristics 1. color degrees

- g: color octet
- q: color triplet
- 2. confinement
- **3. asymptotic freedom**
- **4. meson exchange effect** 25SEP2009 SRC &

Simplification

g exchange effect $\rightarrow qq$ potential antisymmetrization among quarks phenomenological r^2 potential OGEP \rightarrow color analogue of Fermi-Breit interaction

EMEP acting between quarks

B₈B₈ interactions by fss2 PPNP58 (2007) 439-520

A natural and accurate description of *NN*, *YN*, *YY* interactions in terms of (3*q*)-(3*q*) RGM

- Short-range repulsion and LS by quarks
- Medium-attraction and long-rang tensor by S, PS and V meson exchange potentials (fss2) (*Cf.* FSS without V : PRC54 (1996) 2180)

quark Hamiltonian

$$H = \sum_{i=1}^{6} (m_i + p_i^2/2m_i)$$

+ $\sum_{i
- $U_{ij}^{\text{Conf}} \propto r_{ij}^2$
- U_{ij}^{FB} : Fermi-Breit interaction
- $U_{ij}^{\text{S}\beta}$: scalar-meson exchange$

- • $U_{ii}^{PS\beta}$: pseudo-scalar-meson exchange
- • $U_{ij}^{V\beta}$: vector-meson exchange

25SEP2009

color analogue of Fermi- Breit interaction (in momentum space)

 $U_{ij}^{\mathrm{FB}} = U_{ij}^{\mathrm{C}} + U_{ij}^{\mathrm{MR}} + U_{ij}^{\mathrm{CM}} + U_{ij}^{\mathrm{sLS}} + U_{ij}^{\mathrm{aLS}} + U_{ij}^{\mathrm{GT}}$

with

$$\begin{split} U_{ij}^{\mathrm{C}} &= \frac{1}{4} \alpha_{S}(\lambda_{i} \cdot \lambda_{j}) \cdot \frac{4\pi}{k^{2}} \\ U_{ij}^{\mathrm{MR}} &= \frac{1}{4} \alpha_{S}(\lambda_{i} \cdot \lambda_{j}) \cdot \frac{4\pi}{k^{2}} \cdot \frac{1}{m_{i}m_{j}} \left[\frac{1}{k^{2}} (\boldsymbol{k} \cdot \boldsymbol{p}_{i}) (\boldsymbol{k} \cdot \boldsymbol{p}_{j}) - (\boldsymbol{p}_{i} \cdot \boldsymbol{p}_{j}) \right] \\ U_{ij}^{\mathrm{CM}} &= -\frac{1}{4} \alpha_{S}(\lambda_{i} \cdot \lambda_{j}) \cdot \frac{\pi}{2} \left(\frac{1}{m_{i}^{2}} + \frac{1}{m_{j}^{2}} + \frac{4}{3m_{i}m_{j}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \right) \\ U_{ij}^{\mathrm{SLS}} &= \frac{1}{4} \alpha_{S}(\lambda_{i} \cdot \lambda_{j}) \cdot \frac{1}{4} \cdot \frac{4\pi}{k^{2}} i \left[\boldsymbol{k} , \frac{\boldsymbol{p}_{i} - \boldsymbol{p}_{j}}{2} \right] \cdot \left\{ \frac{1}{m_{i}^{2}} \boldsymbol{\sigma}_{i} + \frac{1}{m_{j}^{2}} \boldsymbol{\sigma}_{j} + \frac{2}{m_{i}m_{j}} (\boldsymbol{\sigma}_{i} + \boldsymbol{\sigma}_{j}) \right\} \\ U_{ij}^{\mathrm{aLS}} &= \frac{1}{4} \alpha_{S}(\lambda_{i} \cdot \lambda_{j}) \cdot \frac{1}{8} \cdot \frac{4\pi}{k^{2}} i \left[\boldsymbol{k} , \boldsymbol{p}_{i} + \boldsymbol{p}_{j} \right] \cdot \left\{ \frac{1}{m_{i}^{2}} \boldsymbol{\sigma}_{i} - \frac{1}{m_{j}^{2}} \boldsymbol{\sigma}_{j} - \frac{2}{m_{i}m_{j}} (\boldsymbol{\sigma}_{i} - \boldsymbol{\sigma}_{j}) \right\} \\ U_{ij}^{\mathrm{GT}} &= \frac{1}{4} \alpha_{S}(\lambda_{i} \cdot \lambda_{j}) \cdot \frac{1}{4} \cdot \frac{4\pi}{k^{2}} \cdot \frac{1}{m_{i}m_{j}} \left\{ (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{k})(\boldsymbol{\sigma}_{j} \cdot \boldsymbol{k}) - \frac{(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j})\boldsymbol{k}^{2}}{3} \right\} \end{split}$$

where $\boldsymbol{k} = \boldsymbol{q}_f - \boldsymbol{q}_i$

25SEP2009

meson-exchange qq potentials

$$\begin{split} U^{\rm S}(\boldsymbol{q}_{f},\boldsymbol{q}_{i}) &= gg^{\dagger} \frac{4\pi}{\boldsymbol{k}^{2} + m^{2}} \left\{ -1 + \frac{\boldsymbol{q}^{2}}{2m_{ud}^{2}} - \frac{1}{2m_{ud}^{2}} i\boldsymbol{n} \cdot \boldsymbol{S} \right\} \\ U^{\rm PS}(\boldsymbol{q}_{f},\boldsymbol{q}_{i}) &= -ff^{\dagger} \frac{1}{m_{\pi^{+}}^{2}} \frac{4\pi}{\boldsymbol{k}^{2} + m^{2}} \left[(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{k})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{k}) - (1 - c_{\delta})(m^{2} + \boldsymbol{k}^{2}) \frac{1}{3}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) \right] \\ U^{\rm V}(\boldsymbol{q}_{f},\boldsymbol{q}_{i}) &= \frac{4\pi}{\boldsymbol{k}^{2} + m^{2}} \left\{ f^{e}f^{e\dagger} \left(1 + \frac{3\boldsymbol{q}^{2}}{2m_{ud}^{2}} \right) - f^{m}f^{m\dagger} \frac{2}{(m_{ud}m)^{2}} \left[(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{n})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{n}) - (1 - c_{qss}) \frac{1}{3}\boldsymbol{n}^{2}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) \right] \\ &- \left(f^{m}f^{e\dagger} + f^{e}f^{m\dagger} \right) \frac{2}{m_{ud}m} i\boldsymbol{n} \cdot \boldsymbol{S} \right\} \end{split}$$

where

$$oldsymbol{k} = oldsymbol{q}_f - oldsymbol{q}_i, \ oldsymbol{q} = (oldsymbol{q}_f + oldsymbol{q}_i)/2$$

and $oldsymbol{n} = [oldsymbol{q} imes oldsymbol{k}].$

$$gf^{\dagger} \longrightarrow \begin{cases} g_1 f_1 \\ g_8 f_8 \Sigma'_{\beta} \lambda_{\beta}(i) \lambda_{\beta}(j) \end{cases}$$

with singlet-octet meson mixing

25SEP2009

equations **Resonating-Group Method** a method developed in the cluster models of light nuclei Antisymmetrized (RGM) wave function $\phi : [(0s)^3 \times spin \times flavor]$ wave functions **X(r)** M or d U relative wave function

Lippmann-Schwinger (LS) RGM PTP 103 (2000) 755

RGM Equation $\langle \phi(3q)\phi(3q)|E-H/\mathcal{A} \{\phi(3q)\phi(3q)\chi(r)\} \rangle = 0$

- Solve $[\varepsilon H_0 V_{RGM}(\varepsilon)]\chi = 0$ in the momentum representation, where $V_{RGM}(\varepsilon) = V_D + G + \varepsilon K$
- Born amplitudes $\langle q_{\rm f} | V_{\rm RGM}(\varepsilon) | q_{\rm i} \rangle$ PTP 104 (2000) 1025

 $V_{\text{RGM}}(\varepsilon)$ is non-local, energy dependent and sometimes involves the Pauli forbidden state.

EMEP direct terms

$$\begin{split} M_D^S(\boldsymbol{q}_f, \boldsymbol{q}_i) &= g^2 \frac{4\pi}{\boldsymbol{k}^2 + m^2} e^{-\frac{1}{3}(bk)^2} \left\{ \begin{array}{l} X_{0D+}^C \left[-1 + \frac{1}{2(3m_{ud})^2} \left(\boldsymbol{q}^2 + \frac{9}{2b^2} \right) \end{array} \right] \\ &- \frac{3}{2(3m_{ud})^2} X_{0D+}^{LS} i \boldsymbol{n} \cdot \boldsymbol{S} - \frac{3}{2(3m_{ud})^2} X_{0D+}^{LS(-)} i \boldsymbol{n} \cdot \boldsymbol{S}^{(-)} \end{array} \right\} \\ M_D^{PS}(\boldsymbol{q}_f, \boldsymbol{q}_i) &= -f^2 \frac{1}{m_{\pi^+}^2} \frac{4\pi}{\boldsymbol{k}^2 + m^2} e^{-\frac{1}{3}(bk)^2} X_{0D+}^T \left[(\boldsymbol{\sigma}_1 \cdot \boldsymbol{k})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{k}) - (1 - c_\delta) \frac{(m^2 + \boldsymbol{k}^2)}{3} (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) \right] \\ M_D^V(\boldsymbol{q}_f, \boldsymbol{q}_i) &= \frac{4\pi}{\boldsymbol{k}^2 + m^2} e^{-\frac{1}{3}(bk)^2} \left\{ (f^e)^2 X_{0D+}^C \left[1 + \frac{3}{2(3m_{ud})^2} \left(\boldsymbol{q}^2 + \frac{9}{2b^2} \right) \right] \\ &- (f^m)^2 \frac{2}{(3m_{ud}m)^2} X_{0D+}^T \left[(\boldsymbol{\sigma}_1 \cdot \boldsymbol{n})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{n}) - (1 - c_{qss}) \left(\frac{\boldsymbol{n}^2}{3} + \frac{\boldsymbol{k}^2}{b^2} \right) (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) \\ &+ \frac{3}{2b^2} [\boldsymbol{\sigma}_1 \times \boldsymbol{k}] \cdot [\boldsymbol{\sigma}_2 \times \boldsymbol{k}] \right] - 2f^m f^e \frac{2}{3m_{ud}m} X_{0D+}^{LS} i \boldsymbol{n} \cdot \boldsymbol{S} - 2f^m f^e \frac{2}{3m_{ud}m} X_{0D+}^{LS(-)} i \boldsymbol{n} \cdot \boldsymbol{S}^{(-)} \right\} \end{split}$$

where $X_{x\mathcal{T}}^{\Omega}$ are spin-flavor (-color) factors. 25

25SEP2009

model parameters

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
FSS 800 1250 970 1145 fss2 800 1250 846 ³⁾ 936 c_{δ} c_{qsss} c_{qT} 1) θ_4^S is used on FSS 0.381 - - 2) $\theta^V = 35.264^\circ$ fss2 0.4756 ⁴⁾ 0.6352 3.139 ⁻⁵⁾ pole ρ meson
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
FSS 0.381 2) $\theta^V = 35.264^\circ$ fss2 0.4756 ⁴) 0.6352 3 139 ⁵ pole ρ meson
$fss2 \ 0 \ 4756^{4}$ 0 $6352 \ 3 \ 139^{5}$ pole ρ meso
1.1.2 0.1100 0.0002 0.100 F
MeV (0.4874 3) $m_{\delta} = 720$ M SRC & T structure at J-PAR 4) only for π c

5) augment the Fermi-Breit tensor term by c_{qT} .

25SEP2009

np phase shifts by fss2 (J=0-2)

SRC & T structure at J-PARC

np phase shifts by fss2 (J=2-4)

SRC & T structure at J-PARC

np phase shifts by fss2 and FSS for $T_{lab} < 800$ MeV. Some empirical inelasticity parameters ρ are also shown for $T_{lab} > 300$ MeV.

NN and YN total cross sections

25SEP2009

30

Deuteron properties by fss2 in three different calculational schemes, compared with the predictions of the Bonn model-C potential and the experiment

	isospin basis	isospin basis particle basis		Bonn C	Expt.
		Coulomb off	Coulomb on	-	
$\epsilon_d \; (MeV)$	2.2250	2.2261	2.2309	fitted	2.224644 ± 0.000046
P_D (%)	5.490	5.490	5.494	5.60	
$\eta = A_D / A_S$	0.02527	0.02527	0.02531	0.0266	0.0256 ± 0.0004
rms (fm)	1.9598	1.9599	1.9582	1.968	1.9635 ± 0.0046
$Q_d \ (\mathrm{fm}^2)$	0.2696	0.2696	0.2694	0.2814	0.2860 ± 0.0015
$\mu_d \; (\mu_N)$	0.8485	0.8485	0.8485	0.8479	0.85742

isospin basis particle basis Expt. Coulomb off Coulomb on -17.80 -7.819 ± 0.0026 -7.810a $pp \ ^{1}S_{0}$ 2.6802.581 2.794 ± 0.0014 rP0.061-0.064 $-4.82 \pm 1.11, -2.71 \pm 0.34$ -2.876-3.117a $pp {}^{3}P_{0}$ 3.8343.735 $7.14 \pm 0.93, 3.8 \pm 1.1$ rP-0.011-0.0341.8211.992 $1.78 \pm 0.10, \, 1.97 \pm 0.09$ a $pp {}^{3}P_{1}$ -8.162-7.5666 $-7.85 \pm 0.52, -8.27 \pm 0.37$ rP0.0010.001-18.04-18.04 $-18.05 \pm 0.3, -18.9 \pm 0.4$ a $nn {}^1S_0$ 2.6772.677 2.75 ± 0.11 rP0.0610.061-2.881-2.881a $nn {}^{3}P_{0}$ 3.8253.825rP-0.011-0.0111.8231.823a $nn {}^{3}P_{1}$ r-8.154-8.155P0.0010.001-23.76-27.39-27.87 -23.748 ± 0.010 a $np {}^1S_0$ 2.5882.5322.529 2.75 ± 0.05 rP0.0590.0520.052-2.740-2.466-2.466a $np {}^{3}P_{0}$ r3.8693.9303.930P-0.013-0.018-0.0185.3995.4005.395 5.424 ± 0.004 a $np {}^{3}S_{1}$ 1.7351.7351.734 1.759 ± 0.005 rP0.0630.0630.0632.8242.8262.826a $np {}^1P_1$ -6.294-6.300-6.300rP-0.006-0.006-0.0061.7401.5821.582a $np {}^{3}P_{1}$ -8.198-8.185-8.185rР 0.0010.000 0.000

Effective range parameters of fss2 for the NN interactions

25SEP2009

4. Results and

discussion

Flavor-SU(3) dependence of the B_8B_8 intereactions

If the Hamiltonian is $B_8 B_8 (I)$ $\mathcal{P} = -1$ (antisymmetric) S $\mathcal{P} = +1$ (symmetric) approximately SU(3) scalar, ^{1}E ^{3}E ^{3}O ^{1}O or or we can expect that the NN (I=0)0 (03)baryon-baryon interactions (22) $NN \ (I=1)$ with the same SU(3) $\frac{1}{\sqrt{10}}[(11)_s + 3(22)]$ ΛN $\frac{1}{\sqrt{2}}[-(11)_a + (\overline{03})]$ representation should be very $\frac{1}{\sqrt{10}}[3(11)_s - (22)]$ $\frac{1}{\sqrt{2}}[(11)_a + (03)]$ $\Sigma N \ (I = 1/2)$ -1 $\Sigma N \ (I = 3/2)$ (22)(30)similar. $\frac{1}{\sqrt{5}}(11)_s + \frac{9}{2\sqrt{30}}(22) + \frac{1}{2\sqrt{2}}(00)$ $\Lambda\Lambda$ NN(I=1) $\frac{1}{\sqrt{5}}(11)_s - \sqrt{\frac{3}{10}}(22) + \frac{1}{\sqrt{2}}(00)$ $(11)_{a}$ $\Xi N (I=0)$ (22) $\Sigma N(I=3/2)$, $\Sigma \Sigma(I=2)$ $\sqrt{\frac{3}{5}}(11)_s + \sqrt{\frac{2}{5}}(22)$ $\frac{1}{\sqrt{3}}[-(11)_a + (30) + (03)]$ $\Xi N \ (I=1)$ $\Xi\Sigma(I=3/2), \ \Xi\Xi(I=1)$ $-\sqrt{\frac{2}{5}}(11)_s + \sqrt{\frac{3}{5}}(22)$ -2 $\Sigma\Lambda$ $\frac{1}{\sqrt{2}}[(30) - (03)]$ $\sqrt{\frac{3}{5}}(11)_s - \frac{1}{2\sqrt{10}}(22) - \sqrt{\frac{3}{8}}(00)$ $\Sigma\Sigma (I=0)$ (03) : NN(I=0) $\implies \Xi\Sigma(I=3/2)$ $\Sigma\Sigma (I=1)$ $\frac{1}{\sqrt{6}}[2(11)_a + (30) + (03)]$ (22) $\Sigma\Sigma (I=2)$ $(30): \Sigma N(I=3/2) \iff \Xi \Xi(I=0)$ ΞΛ $\frac{1}{\sqrt{10}}[(11)_s+3(22)]$ $\frac{1}{\sqrt{2}}[-(11)_a+(30)]$ $\frac{1}{\sqrt{10}}[3(11)_s - (22)]$ $\frac{1}{\sqrt{2}}[(11)_a + (30)]$ $\Xi\Sigma (I = 1/2)$ -3The feature of the NN(I=0) $\Xi\Sigma \ (I = 3/2)$ (22)interaction succeeds to the $\Xi\Xi (I=0)$ -4(30) $\Xi\Sigma$ (I=3/2) interaction !? $\Xi\Xi (I = 1)$ (22)

Flavor-SU(3) dependence of the B_8B_8 intereactions

Behavior of the B_8B_8 interaction in each flavor-SU(3) symmetry in the SU₆ quark model

- (22) : attractive with core
- (00) : attractive without core
- (03) : attractive with core
- (30) : almost forbidden state

 $(11)_s$: forbidden state

(11)_{*a*} : small

Behavior of the flavor-symmetry breaking of the B_8B_8 interaction in the present model (fss2)

The B_8B_8 interactions generally get weaker as more strangeness is involved.

 \Rightarrow Is it the general trend of the SU_6 quark model ?

Structure of the B_8B_8 interaction in the SU_6 quark model

Cancellation between the short-range repulsion generated from the color-magnetic term and medium- (and long-) range attraction generated from the EMEP

- They get weaker with increasing the strangeness.
- The feature of the FSB of B_8B_8 interactions is decided by the correlation between the reduction of the repulsion and attraction !

equivalent local potential (MeV)

equivalent local potential (MeV)

H-dibaryon in the quark model describing the realistic *NN* and *YN* interactions

- Color-magnetic term generates the short-ranged strong attraction in the flavor-singlet (00) state. (by Jaffe) ΛΛ-ΞΝ-ΣΣ coupled-channel in¹S₀-state
- Coupled-channel calculation only with the FB interaction without FSB
 ⇒ bound state of binding energy 31 MeV
- Coupled-channel calculation only with the FB interaction with FSB \Rightarrow resonance state in the $\Lambda\Lambda$ channel
- Coupled-channel calculation with full interactions with FSB
 - ⇒ Cancelation between the color-magnetic term and the strangeness meson exchange effect for $\Lambda\Lambda$ -ΞN transition potential

5. Summary

- We investigated the short-range B_8B_8 interactions in the realistic SU_6 quark model
- Reduction of the repulsion from color-magnetic term at the short-range region and the attraction from EMEP at the medium-range region, with increasing the strangeness
- Feature of B_8B_8 interactions depend on the correlation between them
- No existing H-dibayon in the present model
 - ⇒ due to the flavor-symmetry breaking and the strangeness meson exchange effect

Comments

Difference between pn and pp(or nn) interactions in the SU_6 quark model

- $[pn] = \frac{1}{\sqrt{2}} ([[NN(I=0)] + [NN(I=1)]))$
- [pp] = [nn] = [NN(I=1)]

 $[NN(I=0)] : {}^{3}S_{1}, {}^{1}P_{1}, {}^{3}D_{J}, {}^{1}F_{3}, ..., [NN(I=1)] : {}^{1}S_{0}, {}^{3}P_{J}, {}^{1}D_{2}, {}^{3}F_{J}, ...$ (1)Quark-Pauli effect : The normalization kernels in the ${}^{1}S_{0}$ and ${}^{3}S_{1}$ states have the same eigenvalues no difference
(2)Color-magnetic term : Its repulsion is stronger in the NN ${}^{1}S_{0}$ -

- (2)Color-magnetic term : Its repulsion is stronger in the $NN^{1}S_{0}$ -state than in the $NN^{3}S_{1}$ -state.
 - simple estimation $< \Sigma_{i,j} (\lambda_i^{c} \cdot \lambda_j^{c})(\sigma_i \cdot \sigma_j) >$ with the spinflavor-color wavefunction Shimizu, RPP52(1989)1
 - equivalent local potential Suzuki et al, PRC27(1983)299
- (3) LS term : no contribution in the ${}^{3}S_{1}$ and ${}^{1}P_{1}$ states

Tensor force in the SU_6 quark model

- Origin of tensor contribution in the present model
 (1)FB interaction : small
- (2) π -exchange effect : large at the long-range region
- $(3)\rho$ -exchange effect : partial cancellation of the π -exchange effect
 - The large contribution of the tensor force to *pn* interaction <u>at the</u> <u>short-range (high-energy) region</u> is unclear in the present model, which is the low-energy effective model.
- -effect of higher-momentum term
- multi-gluon exchange effect
- N Δ channel coupling effect

Entem *et al.*, PRC62(2000)034002

⇒ The large contribution of attraction even in NN¹S₀-state by introducing the coupling to N∆ ${}^{5}D_{0}$ -channel