

New Hadron Facility at J-PARC

Shin'ya Sawada 澤田 真也 KEK

(High Energy Accelerator Research Organization, Japan)

September 25, 2009

Shin'ya Sawada

Contents

- Overview of J-PARC
- Hadron Experimental Facility (Hadron Hall)
- Hadron Physics Examples
 - Hypernuclear Physics
 - Hadron mass?
 - Drell-Yan
- Sumnmary

J-PARC Facility

Joint Project between KEK and JAEA

Linac (330m)

3GeV Synchrotron (350m)

500 eV Synchrotron (1600 m)

Shin'ya Sawada Superconducting magnets for the neutrino beamline

J-PARC Facility (KEK/JAEA) South to North

Experimental Areas

Hadron Exp.

Facility

50 Gel/ C. Materials and Life Experimental Facility

Linac

Ge

Synchrotron

Neutrino Beams

(to Kamioka)

Bird's eye photo in January of 2008

J-PARC Construction Schedule

Feb. 27 2006

Contents

Overview of J-PARC

Hadron Experimental Facility (Hadron Hall)

- Hadron Physics Examples
 - Hypernuclear Physics
 - Hadron mass?
 - Drell-Yan
- Sumnmary

Hadron Facility of J-PARC

CRCS

- m

INT

Bird's eye photo in July 2009

50GeV-ps

.....

F

Slow Extraction Section and Switch Yard

- Length: 250m
- □ Magnets: 36
 - MIC: 7
 - PI: 29
 - All these are "second hand" from the KEK-PS facility.
 - Semi-remotehandling system against high rad and heat deposit
 - Electricity
 - Water
 - Vacuum
 - Beam monitors

Hadron Hall

Civil engineering of the Hall was finished in July, 2007.

5.1m

K1.8

KL

K1.1

2007.07.19

Nov.2008 Construction of Hadron Experimental Hall

High-P

Primary

K1.8

July2007

Typical Beam Profiles measured with Screen Monitors

And 1 County

Hadron Beamline Control Room

化ハドロンビームライン

ビーム取り出し、輸送成功

平成 21 年 1 月 27 日 19時 35 分

Plan View: Hadron Experimental Hall

Hadron Hall in March, 2009

Contents

Overview of J-PARC

Hadron Experimental Facility (Hadron Hall)

Hadron Physics Examples

- Hypernuclear Physics
- Hadron mass?
- Drell-Yan

Existense of the E hypernuclei?

- Potential of the Ξ ?
 - → EOS in high density nuclear matter, say in a neutron star
- EN interaction
 - Attractive or repulsive? How strong?
 - Spin, isospin dependence?
- Width of the bound state?
 - $\Xi N \rightarrow AA$ Conversion.

 $\Lambda, \Sigma^{-}, \Xi^{-}, K^{-}$ in the core of Neutron-Star

Ξ Potential & High Density **Nuclear Matter**

E05: Spectroscopic Study of Ξ -Hypernucleus, ${}^{12}{}_{\Xi}$ Be, via the ${}^{12}C(K^-,K^+)$ Reaction

- Missing mass spectroscopy via the (K⁻,K⁺) reaction
 - K1.8 Beam Analyzer
 - $\Delta p/p = 3.3 \times 10^{-4}$
 - SksPlus Spectrometer
 - 30msr
 - ∆p/p = 0.17%
 - ∆M=3MeV(FWHM)
- The first observation of
 - Ξ hypernuclear states
 - − Ξ-Nucleus Potential
 - Ξ-N Interaction
 - Ξ -N -> $\Lambda\Lambda$ Conversion

September 25, 2009

Shin'ya Sawada

Recent K1.8/K1.8BR Beamlines

K1.8 & Tohoku saka lara 17/15 setup Students, postdocs, and professors working hard!

J-PARC E16: Electron pair spectrometer to explore the chiral symmetry in QCD

primary proton beam at high momentum beam line + large acceptance electron spectrometer

10⁷ interaction (10 X E325) 10¹⁰ protons/spill with 0.1% interaction length target → GEM Tracker eID : Gas Cherenkov + Lead Glass Large Acceptance (5 X E325)

velocity dependence nuclear number dependence $(p \rightarrow Pb)$ centrality dependence \rightarrow systematic study of mass modification

High Momentum Beamline

North

Dimuon from p+p, p+d, and p+A

Physics with High-Mass Dimuons with unpol beam/target

- Drell-Yan process
 - Antiquarks in nuclei and nucleons
 - Quark energy loss in nuclear medium
 - Drell-Yan angular distributions
 - Toward spin related structure such as Bohr-Molders
- Quarkonium production
 - Pronounced nuclear dependence
 - Production mechanism and polarization
 - Parton distribution in the nucleon
- Heavy quark production
 - Open charm production
 - B-meson production

 DY cross section is ~16 times larger at 50 GeV than at 800 GeV.

$$\frac{d\sigma_{DY}}{dx_1 dx_2} \approx \frac{1}{s} \text{ at fixed } x_1, x_2$$

 J-PARC can measure d-bar/u-bar at larger x.

- Fermilab E906: Main Injector with 120-GeV protons
 - 2010-2012
 - Mid x region, really d-bar/u-bar < 1??</p>
- J-PARC P04: Experiment with 30 and 50-GeV protons
 - 2013-?
 - Experimental apparatus mainly from E906
 - Ep = 30 GeV at the beginning
 - J/Psi physics
 - Ep = 50 GeV at the next stage with unpol beams for higher x
 - Polarized target and / or polarized beams
 - Pol. beams need further study.

Fermilab E906/Drell-Yan Collaboration

Abilene Christian University Donald Isenhower, Mike Sadler, Rusty Towell

Institute of Physics, Academia Sinica Wen-Chen Chang, Yen-Chu Chen, Da-Shung Su

Argonne National Laboratory John Arrington, <u>Don Geesaman</u>*, Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, <u>Paul E. Reimer</u>*, Patricia Solvignon

> University of Colorado Ed Kinney

Fermi National Accelerator Laboratory Chuck Brown

University of Illinois Naomi C.R Makins, <u>Jen-Chieh Peng</u>

*Co-Spokespersons

People with <u>underline</u> are included also in P04 and/or P24 at J-PARC.

September 25, 2009

Institutions in Japan

KEK

Shinya Sawada

RIKEN

<u>Yuji Goto, Atsushi Taketani,</u> <u>Yoshinori Fukao, Manabu</u> <u>Togawa</u>

Tokyo Tech

<u>Toshi-Aki Shibata,</u> Yoshiyuki Miyachi Ling-Tung University Ting-Hua Chang

Los Alamos National Laboratory Gerry Garvey, <u>Mike Leitch</u>, <u>Pat McGaughey</u>, Joel Moss

> Maryland Betsy Beise

Rutgers University

Ron Gilman, Charles Glashausser, <u>Xiaodong Jiang</u>, Elena Kuchina, Ron Ransome, Elaine Schulte

Texas A & M University Carl Gagliardi, RobertTribble

Thomas Jefferson National Accelerator Facility Dave Gaskell

Valparaiso University Don Koetke, Jason Webb

- J-PARC is a world-class, high-intensity proton accelerator facility.
- The construction of the Phase 1 was completed in Japanese Fiscal Year 2008.
- First beams have been delivered to all the experimental facilities. From October, the beams are resumed, and we expect the beam quality/intensity would be very much improved.
- Hadron Experimental Facility is a main ground for nuclear physicist to play. The first experiment started, and many to begin.