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• Intro: αs from LEP and GIGA-Z

• R(s): Theoretical Aspects

• New Complete Results at Order O(αs
4)

• summary and outlook



αs from LEP from a review /S. Bethke (2004)/

Rℓ = Γh/Γℓ = 20.767± 0.025 (1.2 0/00 !)

(∼ 106 leptonic events)

αs = 0.1226± 0.0038 +0.0028
−0.0

(

MH = 900
100GeV

)

σℓ ∼ Γ2
ℓ

Γ2
tot

= 2.003± 0.0027pb

(luminosity)

αs = 0.1183± 0.0030 +0.0022
−0.0

(

MH = 900
100GeV

)

SM-fit: αs = 0.1188± 0.0027

based on ∼ 107 Z-events/experiment

GIGA-Z: 109 events =⇒ δαs = 0.0009 /M. Winter/
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Now  &
LC/GigaZ

αs = 0.1183± 0.0027 vs ±0.0009

δαs/αs = 2.3% δαs/αs = 0.8%



extraction of αs from Γ(Z → hadrons) based on

Γhad = Γ0

(

R(s) ≡ 1 +
αs

π
+ 1.409

α2
s

π2
− 12.767

α3
s

π3
+ ?

α4
s

π4

)

+ corrections:

(

∼ m2
b/M

2
z /known already to αs

4!; see below / +

singlet terms +... /not decoupled top mass logs!,

known to αs
3 only!/ +

mixed QCD ⊗ electroweak +...

)



dominant theory error:
uncalculated higher orders! α4

s (massless diagrams!)
to have idea about their size: we use

optimization schemes (PMS,FAC): −97
(

αs
π

)4
(Kataev)

estimates for uncertainty:

• conservative: last calculated term
(

α3
s

)

=⇒ δαs = 0.002; δαs/αs = 1.7%

• “standard” (optimistic): estimated α4
s term

=⇒ δαs = 0.0006; δαs/αs = 0.5%

• scale variation: µ = 1
3

√
s− 3

√
s

δαs = +0.002
+0.00016 δαs/αs = 1.7− 0.1% (asymmetric!)



theory error

smaller than present experimental error (but not much!)

highly relevant for GIGA-Z

=⇒ calculation of α4
s-term required for GIGA-Z

and even more so for Rτ = Γ(τ → ν had)/Γ(τ → eνν)



Technical Aspects

R(s) ≈ ℑΠ(s− iδ)

3Q2Π(q2 = −Q2) =

∫

eiqx〈0|T [ jv
µ(x)jv

µ(0) ]|0〉dx

• one needs only pole part (e.g. UV counterterm) of ΠB to get R(s)
and this is MUCH simpler to compute

ΠB(Q2, αB
s ) =

∑ aij

ǫi
(
µ2

Q2
)ǫj (D = 4− 2ǫ)

1

ǫn
(
µ2

Q2
)ǫn ⇑−→ Lnn(µ2/Q2) + · · · ℑ−→ Lnn−1(µ2/s) + . . .

n = 0(constant)
ℑ−→ 0

The same is true for other correlators (scalar, tensor..) and also for massive
corrections like

m2
q/s,m

4
q/s

2, etc. / J. Kühn, K.Ch (91,94)/



For Π at 5 loop

∂

∂ log(Q2)
Π = γph(as) −

(

β(as)
∂

∂as

)

Π

ր տ
anom.dim. of the photon field;

comes from 5-loop integrals:

most complicated part of

calculations

4-loop integrals only contribute

due to the factor of β(as)

• to find Log-dependent part of Π at 5-loops one needs 5-loop

anomalous dimension γph and 4-loop Π

• (5) loop anom.dim. reducible to 4-loop massless propagators /K. Ch.,

Smirnov (1984)/;involved combinatorics resolved and automatized

/K.Ch. 1997/



COMMON STRATEGY

1. reduce (with the use of the traditional IBP method) to

master integrals

2. evaluate masters (better analytically)

COMMON PROBLEMS

1. IBP identities are extremely complicated at higher

loops/legs

2. master integrals are difficult to perform analytically

(numerical integration is possible but not simple: an art

by itself)



5 ways to reduce a Feynman integral to Masters

• Empiric /sit and think/ way (/Mincer,Matad/); new: 3-loop splitting

functions! /Moch,Vermaseren, Vogt (2004)/

• Arithmetic way: direct solution of /thousands or even millions!/

IBP eqs. /Laporta, Remiddi (96); Gehrmann, Schröder, Anastasiou,

Czakon, Melnikov, Czarnecky, Bonciani, Mastrolia, Sturm . . .

• Gröbner Basis Technique /Tarasov (98), Gerdt, very new: Smirnov

& Smirnov (wait for his talk!)/

• New Representation for CF’s /Baikov (96), Steinhauser, Smirnov . . . /

⇓
• 1/D expansion of CF’s /Baikov (98-04) /



Feynman parameters: New parameters:

∫

d α eiα(m2−p2) ≈ 1

m2 − p2
≈
∫

d x

x
δ(x− (m2 − p2))

Now for a given topology one can make loop integrations once and forever with the
result:

Baikov’s Representation:

F (n) ∼
∫

. . .

∫

dx1 . . . dxN

xn1
1 . . . x

nN
N

[P (x)]
(D−h−1)/2

,

where P (x) is a polynomial on x1, . . . , xN (and masses and external momenta)

New representation obviously meets the same set IBP’id as the original integral but it
has much more flexibility! (Due to choice of the integration contours)

MAIN IDEA: to use (1) as a ”template” for the very CF’s!



Reduction to Masters: 1/D expansion1

• coefficient functions in front of master integrals depend on D in

simple way:

Cα(D) =
Pn(D)

Qm(D)
===
D→∞

∑

k

Cα
k (1/D)k

• The terms in the 1/D expansion expressible (with the use of the

Baikov’s representation) through simple Gaussian integrals

• sufficiently many terms in 1/D and Cα
k −→ Cα(D)

• computing time and required resources: could be huge (the price for
full automatization); to cope with it we use parallel FORM /Vermaseren, Retey,
Fliegner, Tentyukov, ...(2000 – . . . )

1Baikov, Phys. Lett. B385 (1996) 403; B474 (2000) 385; Nucl.Phys.Proc.Suppl.116:378-
381,2003



NEW All Master Integrals solved analytically (2004)
(method: “glue and cut”(Chetyrkin, Tkachov /1981/)) + reduction to mastersm61&%'$ m62&%'$QQQ� �� m63&%'$��� m51&%'$����HHH m41&%'$



JJ JJ m42&%'$



JJ JJAAm44&%'$



 m45&%'$



JJ JJ m34&%'$AAAA ���� m35&%'$AA�� m36&%'$

m52�������������� m43&%'$���� m31���������������� m32������������ m33&%'$�������� m21&%'$&%'$HHHm22&%'$�� �� m23������������ m24������������ m25&%'$��� BBB m26&%'$���� m27&%'$&%'$

m11������������ m12�������� m13&%'$������� m14&%'$�������� m10&%'$&%'$



Summary of Technical Aspects

4-loop propagators (including real parts) and the absorpive

parts of 5-loop ones can in principle be analytically

computed in any massless theory⋆

in QCD it means the correlators to O(α4
s) /5-loops!/

⋆ in practice: severe constraints come from the finitnes of computer resourses, see
below



List of Recent Results⋆

1: the first complete five-loop result in QCD: O(αs
4m2

q/s) contribution

to R(s)

2: O(αs
3m2

s/s) contribution (including real part) to the charged
current correlator −→ full O(αs

3m2
s/M2

τ) contribution to the
semileptonic decay rate of τ -lepton

3: full O(αs
4) contribution to RS(s) ← /R(s) for the scalar quark currents/

4: full 4-loop contribution to the QCD decoupling relation

⋆ 1–3: Baikov, Chetyrkin, Kühn, 2004 – 2005; 4: BChK + Sturm, 2005



OUR RESULTS (NF = 3)

The most demanding five-loop anomalous dimension of the SS-
correlator:

γS
q = −6 + as − 10a2

s

[

−383

12
+ 3 ζ3

]

+a3
s

[

−122935

864
+

2365

36
ζ3 +

21

4
ζ4 −

65

2
ζ5

]

+ a4
s

[

−39620177

41472
+

1288967

3456
ζ3 −

29425

288
ζ2
3 −

44971

384
ζ4

−124045

576
ζ5 +

16375

64
ζ6 +

97895

384
ζ7

]

Note the structure of the α4
s term: ζ(6) and ζ(7) are new irrationalities

which appear at five loop level



Some Details about Complexity of the Calculation

• CPU-time consumption (very approximately) 3 · 108 sec

(about 10 years) for a 1.5GH PC

• Due to the heavy use of the SGI cluster (of 32 parallel

SMP CPU of 1.5 GH frequency each) the calculation took

about 15 calendar months

• Vector case: optimistically vector is 3 times more

complicated, pessimistically 10 times



Define “Adler function” as (as ≡ αs/π)

DS(Q2) =

∫ ∞

0

Q2 RS(s)ds

(s+Q2)2
⇐⇒ RS(s) = 1 +

17

3
αs/π + . . .

DS(Q2) = 1 +
∞
∑

i=1

di (as(Q))i ⇐⇒ RS(s) = 1 +
∞
∑

i=1

ri (as(s))
i

Our results (for Nf = 3) read:

DS = 1 + 5.666 as + 45.846 a2
s + 465.85 a3

s + 5588.7 a3
s

RS = 1 + 5.667 as + 31.86 a2
s + 89.16 a3

s − 536.84 a4
s

Effects of analytic continuation⋆ inside of RS:

1 + 5.6 as + a2
s (46− 14) + a3

s (466− 377) + a4
s (5589− 6126)

⋆ come from running + one-loop-less coefficients, basically are trivial



Comparison to PMS1 |APAP2 |NNA3 predictions

Exact: d4 = 5588.7 and r4 = −536.84

d4(FAC/PMS) = 5180 −→ r4(FAC/PMS) = −945.28

r4(direct application of FAC/PMS in Minkowskian region) = −528

d4(APM) = 6214 ←− r4(APM) = 195

d4(NNA) = 1116 −→ r4(NNA) = −5009

1 Principle of Minimal Sensitivity (PMS): K.Ch., Kniehl, Sirlin, PRB 402 (1997) 359

2 Asymptotic Padé-Approximant Method (APAM): Chishtie, Elias, Steele, PRD 59 (1999) 105013

3 ‘Naive NoNabelization (NNA): Grosin,Broadhurst, PRD 52 (1995) 4082



BLM prediction⋆ for RS

O(α3
s), exact: 164.1− 25.77nf + 0.259n2

f

BLM: 249− 24nf + 0.33n2
f

O(α4
s), exact: 39.34− 220.9nf + 9.685n2

f − 0.02046n3
f

BLM: 340− 260nf + 13n2
f − 0.046n3

f

⋆ “We thus estimate that nf dependent terms above should be correct to about 30%”

⋆ private communication from S.Brodsky and M.Binger (they have not been informed
about numerical details of our result; only about its existence)



Application: to Higgs Decay into b quarks

Γ(H → f̄f) =
GF MH

4
√

2π
m2

fR
S(s = M2

H)

RS = 1 + 5.66677 as + 29.147 a2
s + 41.758 a3

s−825.7 a4
s

= 1 + 0.2075 + 0.0391 + 0.0020−0.00148

where in the second equation we set as = αs/π = 0.0366

which corresponds the Higgs mass value MH = 120 GeV. The

comparable sizes of the O(a3
s) and the O(a4

s) terms can be

naturally interpreted as a consequence of the accidentally small

coefficient for the a3
s term.



(preliminary!) result of the analysis ⋆

of the QCD sum rule for the pseudosccalr correlator

ms(2 GeV) = 90± 5
∣

∣

∣

param
± 5
∣

∣

∣

nonp
± 5
∣

∣

∣

hadr

param : ΛQCD, scale, condensates

nonpt : instanton correction

hadr : hadronic input

important: new O(αs
4) term amounts to a negligible

≤ 1% shift of ms =⇒ good PT stability!

⋆preliminary results from K.Ch., A. Khodjamirian (2005)



Application: Quark Mass Bounds (Lellouch,de Rafael,Taron, 1997)

positivity of the spectral function + known values ofK pole contribution

imply “rigorous” bounds on the the value of (ms +mu)

[ms(Q) +mu(Q)]
2 ≥ 16π2

Nc

2f2
KM

4
K

Q4

1
(

1 +
M2

K
Q2

)3

1

Π(5)(Q)

For Q = 1.4 GeV we get:

[(ms +mu)](µ = 2GeV) > 87 MeV (α3
s) and 86 MeV (α4

s)

good convergency (?) not really: 1
Π(5)(Q)

∼
{

1− 3.67 as − 0.73 a2
s + (54.7− 77.4) a3

s + (−190.1 + 567.4− 511.8 ) a4
s

}

⇓
[(ms +mu)](µ = 2GeV) > 77 MeV (α3

s) and 74 MeV (α4
s)



QCD Decoupling Relation in Four Loops

nf = nℓ + 1, a
(nℓ)
s (µ) = a

(nf )
s (µ) d(as, µ/mh)

• is used to evolve the αs(MZ) to αs(Mτ)

• the matching function d is known1 to O(α3
s)

• technically it is expressible completely through vacuum

integrals2

• computed using ”Laporta” algorithm

1,2K. Ch. Kniehl, Steinhauser (97)



New Four Loop O(α4
s) Result1

d(as, µ = mh) = 1 + 11/72 a2
s + (0.9721− 0.0847nℓ) a

3
s

+

(5.1703− 1.001nℓ − 0.0220n2
ℓ) a

4
s

Phenomenology : the new O(α4
s) term has almost no effect on

resulting αs(Mτ) but halves the errors due to the choice of the matching

scale and the truncation of the matching function

Interesting: it checks in an independent way all nf-dependent pieces

of the QCD 4-loop β-function!

1 K.Ch., Kühn and Sturm (05); (partially confirmed by very recent
independent calculation by Schrëder and Steinhauser (05) )



SUMMARY

α4
s term in R(s) needed for GIGA-Z (and τ decays)

• systematic reduction to master integrals +
• Master integrals solved+
• ImΠSS available (H→ bb̄)+
• Mass terms of O

(

α4
s

)

available+
• O

(

α4
s

)

matching function is available+
• ImΠV V = RV within reach+(?)

• Huge demands on computing

Other possible applications:

- Coefficient functions in OPE at 4-loops (DIS!) and anomalous

dimensions at 5-loops /only for few lowest moments/
- QCD running of αs and mq at 5-loops
- QCD sum rules......



CHRONOLOGY and FUTURE TIMING of R(s)

1-loop: 1 diagram /BC?/

2-loop: 3 diagrams /1951/

3-loop: 37 diagrams /1979/ (completely by hand)

4-loop: 738 diagrams /1991/ (the first semi-manual calculation

/correcrt from the second try only/ )

1997 (the first completely automatic calculation)/

⇓
5-loop: 19832! diagrams

1991+ 1997 - 1979 = 2008(?) ← looks reasonable



Important ”Dots”:

• IRR works only for log-divergent integrals, while Πjj is in general quadratically
divergent

• The only way to proceede is to use (double!) differentiation w.r.t. he external
momentum q to decrease the dimension

• This leas to ”dots” ≡ squared propagators which immensely complicates all
calcualtions

An important and non-trivial simplification exists for the SS correlator
due to the well-known Ward identity:

qµqνΠ
V/A
µν,ij(q) = (mi ∓mj)

2Π
S/P
ij (q) + (mi ∓mj)(〈ψiψi〉 ∓ 〈ψjψj〉)

basically it means that O(m2
q) part of the longitudinal part of V V corelator identical

to the massless SS one. This has allowed us to compute the O(m2
q) part of the V V

correlator instead of the massless SS which resulted to diagram with ONE SQUARED
PROPAGATOR LESS and saved us a lot of work!


