Complete electroweak $\mathcal{O}(\alpha)$ corrections to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 4$ fermions

Ansgar Denner, PSI

Radcor05, Shonan Village, October 2-7, 2005
work in collaboration with S. Dittmaier, M. Roth and L.H. Wieders
published in PLB612 (2005) 223 [hep-ph/0502063] and hep-ph/0505042, to appear in NPB

- Motivation
- Some details of the calculation (complex-mass scheme, ...)
- Numerical results

Introduction

Many interesting processes at ILC and LHC have more than four external particles: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu \bar{\nu} \mathrm{H}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{H}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 4 f, \ldots, \mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{H}, \mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}, \ldots$

- experimental accuracy typically at the level of some per cent to some per mille at ILC (e.g. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow 4 f$)
- electroweak (EW) radiative corrections grow with energy e.g. leading logarithmic corrections $\propto \alpha \ln ^{2}\left(E / M_{\mathrm{W}}\right)$ (EW Sudakov logarithms)
- radiative corrections grow with number of external particles
\Rightarrow need electroweak radiative corrections for $2 \rightarrow 3$ and $2 \rightarrow 4$ processes
Problems in corrections to $2 \rightarrow 3$ and $2 \rightarrow 4$ processes
- amount of algebra ($\mathcal{O}(1000)$ Feynman diagrams, many complicated ones)
- numerical stability (5-point functions, 6-point functions, phase space, ...)
- treatment of unstable particles

W-pair production at LEP2

- cross-section measurement with $\Delta \sigma_{\mathrm{WW}} / \sigma_{\mathrm{WW}} \sim 1 \%$
\hookrightarrow significance of non-universal electroweak corrections
- M_{W} from threshold cross section with $\Delta M_{\mathrm{W}} \sim 200 \mathrm{MeV}$
- M_{W} from direct reconstruction with $\Delta M_{\mathrm{W}} \sim 40 \mathrm{MeV}$
\hookrightarrow strengthening of M_{H} bounds
- constraints on anomalous
 \hookrightarrow verification of gauge structure

Predictions for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{WW} \rightarrow 4 f(+\gamma)$ at LEP2

- lowest-order predictions based on full $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 4 f(+\gamma)$ matrix elements
- universal radiative corrections \rightarrow "improved Born approximations" (IBA)
- non-universal radiative corrections in "double-pole approximation" (DPA)
\Rightarrow corresponding generators:
KoralW \oplus YFSWW (Jadach,Płaczek,Skrzypek,Ward) and RacoonWW (Denner, Dittmaier,Roth,Wackeroth)

Estimates of theoretical uncertainties (TU) for

- total cross section (Denner et al., Jadach et al.)
$\Delta \sigma_{\mathrm{WW}} / \sigma_{\mathrm{WW}} \lesssim\left\{\begin{array}{llll}2 \% & \text { for } & \sqrt{s}<170 \mathrm{GeV} & \text { (IBA) } \\ 0.7 \% & \text { for } & 170 \mathrm{GeV}<\sqrt{s}<180 \mathrm{GeV} & \text { (DPA) } \\ 0.5 \% & \text { for } & 180 \mathrm{GeV}<\sqrt{s}<500 \mathrm{GeV} & \text { (DPA) }\end{array}\right.$
- direct M_{W} reconstruction: $\quad \Delta M_{\mathrm{W}} \lesssim 5 \mathrm{MeV}$ (Jadach et al. '01) -10 MeV (Cossutti '04)
- bounds on anomalous TGC λ : $\quad \Delta \lambda \lesssim 0.005$ (Brunelière et al. '02)

W-pair production at future ILC

- cross-section measurement with $\Delta \sigma_{\mathrm{WW}} / \sigma_{\mathrm{WW}} \lesssim 0.5 \%$
- M_{W} from threshold cross section with $\Delta M_{\mathrm{W}} \sim 7 \mathrm{MeV}$
\hookrightarrow IBA totally insufficient
- M_{W} from direct reconstruction with $\Delta M_{\mathrm{W}} \sim 10 \mathrm{MeV}$
- constraints on anomalous TGC at level of 0.1%

Theoretical requirements for ILC:

- full $\mathcal{O}(\alpha)$ correction for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 4 f$
(see e.g. TESLA-TDR '01)
 \hookrightarrow subject of this talk!
- leading corrections beyond $\mathcal{O}(\alpha)$

Processes and Feynman diagrams

Complete $\mathcal{O}(\alpha)$ corrections to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu_{\tau} \tau^{+} \mu^{-} \bar{\nu}_{\mu} \quad$ leptonic

(CC11 class)

 $\mathrm{u} \overline{\mathrm{d}} \mu^{-} \bar{\nu}_{\mu} \quad$ semileptonic $u \bar{d} s \bar{c} \quad$ hadronic final state- 40 hexagons

+ graphs with reversed fermion-number flow in final state
- 112 pentagons
- 227 boxes ('t Hooft-Feynman gauge)
- many vertex corrections and self-energy diagrams

Approach for calculation of virtual corrections

- External fermion masses neglected whenever possible (everywhere but in mass-singular logarithms)
- algebraic simplifications using two independent in-house programs implemented in Mathematica, one builds upon FormCaLC, special reduction algorithms for spinorial structures automatic translation into Fortran code
- finite width via complex-mass scheme
- (complex) on-shell renormalization scheme
- numerically stable reduction of tensor integrals to master integrals (scalar 1-, 2-, 3-, 4-point integrals and others in exceptional cases)
- scalar integrals: evaluated with standard techniques and analytic continuation for complex masses
details given in the following and in talk of S . Dittmaier

Algebraic reduction of spinor chains

Feynman amplitude contains $\mathcal{O}\left(10^{3}\right)$ different spinorial structures of the form

$$
\begin{aligned}
& \bar{v}_{1}\left(p_{1}\right) A \omega_{\rho} u_{2}\left(p_{2}\right) \times \bar{v}_{3}\left(p_{3}\right) B \omega_{\sigma} u_{4}\left(p_{4}\right) \times \bar{v}_{5}\left(p_{5}\right) C \omega_{\tau} u_{6}\left(p_{6}\right) \\
& \omega_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{5}\right)
\end{aligned}
$$

example

$$
\bar{v}_{1}\left(p_{1}\right) \gamma^{\mu} \gamma^{\nu} \not p_{i} \omega_{\rho} u_{2}\left(p_{2}\right) \times \bar{v}_{3}\left(p_{3}\right) \gamma_{\nu} \gamma^{\rho} \not p_{j} \omega_{\sigma} u_{4}\left(p_{4}\right) \times \bar{v}_{5}\left(p_{5}\right) \gamma_{\mu} \gamma_{\rho} \not p_{k} \omega_{\tau} u_{6}\left(p_{6}\right)
$$

using 4-dimensional and D-dimensional relations
(Dirac algebra, Chisholm identity, decomposition of metric tensor, ...)
\Rightarrow reduction to $\mathcal{O}(10)$ standard structures with well-behaved coefficients
two different completely independent reduction algorithms for details see hep-ph/0505042

Treatment of finite width

Need scheme that works well in one-loop calculation, in particular also in threshold region, where doubly resonant diagrams do not dominate!

Polle expansion: Stuart '91, Aeppli et al. '93, Aeppli et al. '94

consistent and gauge invariant, not reliable near threshold

Effective field theory approach Beneke et al. '04

equivalent to pole expansion
Naive fixed width scheme: (mildly) breaks gauge invariance, inclusion of finite width in loop diagrams not unique, cancellation of singularities not automatic
desired:
simple uniform description that is valid in the complete phase space without any matching (resonant and non-resonant regions, threshold region and continuum)
\Rightarrow complex-mass scheme

Complex-mass scheme (CMS) at tree level

Denner, Dittmaier, Roth, Wackeroth '99

Define masses of unstable particles from propagator poles in complex plane replace real masses by complex masses everywhere in tree-level expressions:

$$
M_{\mathrm{W}}^{2} \rightarrow \mu_{\mathrm{W}}^{2}=M_{\mathrm{W}}^{2}-\mathrm{i} M_{\mathrm{W}} \Gamma_{\mathrm{W}}, \quad M_{\mathrm{Z}}^{2} \rightarrow \mu_{\mathrm{Z}}^{2}=M_{\mathrm{Z}}^{2}-\mathrm{i} M_{\mathrm{Z}} \Gamma_{\mathrm{Z}}
$$

in particular in definition of weak mixing angle

$$
\cos ^{2} \theta_{\mathrm{W}} \equiv c_{\mathrm{w}}^{2}=1-s_{\mathrm{w}}^{2}=\frac{\mu_{\mathrm{W}}^{2}}{\mu_{\mathrm{Z}}^{2}}
$$

virtues:
all algebraic relations remain valid: Ward identities, Slavnov-Taylor identities \hookrightarrow gauge-parameter independence, unitarity cancellations
drawback:
spurious $\mathcal{O}(\Gamma / M)=\mathcal{O}(\alpha)$ terms in tree-level amplitudes
from terms proportional to Γ in t-channel propagators and in mixing angle are beyond accuracy of tree-level approximation

Complex-mass scheme (CMS) at one-loop level

Split bare masses into complex masses and complex counterterms

$$
M_{\mathrm{W}, 0}^{2}=\mu_{\mathrm{W}}^{2}+\delta \mu_{\mathrm{W}}^{2}, \quad M_{\mathrm{Z}, 0}^{2}=\mu_{\mathrm{Z}}^{2}+\delta \mu_{\mathrm{Z}}^{2}
$$

at level of Lagrangian
\hookrightarrow Feynman rules with complex masses and counterterms
virtues

- perturbative calculations can be performed as usual
- no double counting of contributions (bare Lagrangian not changed!) drawbacks
- need loop integrals with complex masses
- spurious $\mathcal{O}\left(\alpha^{2}\right)$ terms in one-loop amplitudes
- unitarity of S matrix only up to higher-order terms

Complex renormalization: W-boson as example

Direct generalization of on-shell renormalization scheme

Aoki et al. '81; Denner '93; Denner, Dittmaier, Weiglein '94
\Rightarrow need complex field renormalization besides complex mass renormalization

$$
W_{0}^{ \pm}=\left(1+\frac{1}{2} \delta \mathcal{Z}_{W}\right) W^{ \pm}
$$

complex $\delta \mathcal{Z}_{W}$ applies to both W^{+}and $W^{-} \Rightarrow\left(W^{+}\right)^{\dagger} \neq W^{-}$ $\delta \mathcal{Z}_{W}$ drops out in S-matrix elements without external W -bosons
on-shell renormalization conditions for W-boson self-energy

$$
\hat{\Sigma}_{\mathrm{T}}^{W}\left(\mu_{\mathrm{W}}^{2}\right)=0, \quad \hat{\Sigma}_{\mathrm{T}}^{\prime W}\left(\mu_{\mathrm{W}}^{2}\right)=0
$$

\Rightarrow renormalized mass is equal to pole of propagator
solutions of renormalization conditions

$$
\delta \mu_{\mathrm{W}}^{2}=\Sigma_{\mathrm{T}}^{W}\left(\mu_{\mathrm{W}}^{2}\right), \quad \delta \mathcal{Z}_{W}=-\Sigma_{\mathrm{T}}^{\prime W}\left(\mu_{\mathrm{W}}^{2}\right)
$$

require self-energy for complex squared momenta ($p^{2}=\mu_{\mathrm{W}}^{2}$)
\hookrightarrow analytic continuation of the 2-point functions to unphysical Riemann sheet

Expansion of counterterms about real momentum arguments

Way around: appropriate expansions about real arguments

$$
\Sigma_{\mathrm{T}}^{W}\left(\mu_{\mathrm{W}}^{2}\right)=\Sigma_{\mathrm{T}}^{W}\left(M_{\mathrm{W}}^{2}\right)+\left(\mu_{\mathrm{W}}^{2}-M_{\mathrm{W}}^{2}\right) \Sigma_{\mathrm{T}}^{\prime W}\left(M_{\mathrm{W}}^{2}\right)+\mathcal{O}\left(\alpha^{3}\right)
$$

modified counterterms

$$
\delta \mu_{\mathrm{W}}^{2}=\Sigma_{\mathrm{T}}^{W}\left(M_{\mathrm{W}}^{2}\right)+\left(\mu_{\mathrm{W}}^{2}-M_{\mathrm{W}}^{2}\right) \Sigma_{\mathrm{T}}^{\prime W}\left(M_{\mathrm{W}}^{2}\right), \quad \delta \mathcal{Z}_{W}=-\Sigma_{\mathrm{T}}^{\prime W}\left(M_{\mathrm{W}}^{2}\right)
$$

neglected terms are beyond $\mathcal{O}(\alpha)$ and UV-finite by construction
\Rightarrow renormalized self-energy

$$
\hat{\Sigma}_{\mathrm{T}}^{W}\left(k^{2}\right)=\Sigma_{\mathrm{T}}^{W}\left(k^{2}\right)-\delta M_{\mathrm{W}}^{2}+\left(k^{2}-M_{\mathrm{W}}^{2}\right) \delta Z_{W}
$$

with

$$
\delta M_{\mathrm{W}}^{2}=\Sigma_{\mathrm{T}}^{W}\left(M_{\mathrm{W}}^{2}\right), \quad \delta Z_{W}=-\Sigma_{\mathrm{T}}^{\prime W}\left(M_{\mathrm{W}}^{2}\right)
$$

exactly the form of the renormalized self-energies in usual on-shell scheme but - no real parts are taken

- self-energies depend on complex masses and complex mixing angle

Algebraic reduction of tensor integrals

For details see talk of S. Dittmaier and hep-ph/0509141

- 6-point integrals \rightarrow six 5-point integrals
- 5-point integrals \rightarrow five 4-point integrals

Melrose '65; Denner '93

Melrose '65; Denner, Dittmaier '02

- 3-point and 4-point integrals: Passarino-Veltman reduction
\hookrightarrow inverse Gram determinants of up to three momenta
\hookrightarrow serious numerical instabilities where $\operatorname{det} G \rightarrow 0$
(at phase-space boundary, but also within phase space!)
two alternative "rescue systems"
variant 1: appropriate expansions of tensor coefficients in small Gram determinants
variant 2: numerical evaluation of one appropriate tensor coefficient (logarithmic Feynman-parameter integral) and algebraic reduction to this basis integral
- 2 -point integrals: numerically stable direct calculation

Checks of the calculation

- UV structure of virtual corrections
\hookrightarrow independence of reference mass μ of dimensional regularization
- IR structure of virtual + soft-photonic corrections
\hookrightarrow independence of $\ln m_{\gamma} \quad$ ($m_{\gamma}=$ infinitesimal photon mass)
- mass singularities of virtual + related collinear photonic corrections
\hookrightarrow independence of $\ln m_{f_{i}} \quad$ ($m_{f_{i}}=$ small masses of external fermions)
- gauge invariance of amplitudes with $\Gamma_{\mathrm{W}}, \Gamma_{\mathrm{Z}} \neq 0$
\hookrightarrow identical results in 't Hooft-Feynman and background-field gauge
Denner, Dittmaier, Weiglein '94
- real corrections
\hookrightarrow taken from RacoonWW Denner, Dittmaier, Roth, Wackeroth '99-'01
- combination of virtual and real corrections
\hookrightarrow identical results with two-cutoff slicing and dipole subtraction
Dittmaier '99; Roth '00
- two completely independent calculations of all ingredients !

Complete $\mathcal{O}(\alpha)$ corrections to total cross section - LEP2 energies

Corrected cross section:

relative corrections (G_{μ}-scheme):
Denner, Dittmaier, Roth, Wieders '05

- \mid ee4f - DPA $\mid \sim 0.5 \%$ for $170 \mathrm{GeV} \lesssim \sqrt{s} \lesssim 210 \mathrm{GeV}$
- $|e \mathrm{e} 4 \mathrm{f}-\mathrm{IBA}| \sim 2 \%$ for $\sqrt{s} \lesssim 170 \mathrm{GeV}$
\hookrightarrow agreement with error estimates of DPA and IBA

Complete $\mathcal{O}(\alpha)$ corrections to total cross section - ILC energies

Corrected cross section:

relative corrections (G_{μ}-scheme):
Denner, Dittmaier, Roth, Wieders '05

- \mid ee $4 \mathrm{f}-\mathrm{DPA} \mid \sim 0.7 \% \quad$ for $200 \mathrm{GeV} \lesssim \sqrt{s} \lesssim 500 \mathrm{GeV}$ \hookrightarrow agreement with error estimate of DPA
- \mid ee $4 \mathrm{f}-\mathrm{DPA} \mid \sim 1-2 \% \quad$ for $\quad 500 \mathrm{GeV} \lesssim \sqrt{s} \lesssim 1-2 \mathrm{TeV}$

W-production angle distribution at $\sqrt{s}=200 \mathrm{GeV}$

Differential cross section:

relative corrections (G_{μ}-scheme):
$\delta[\%] \quad$ Denner, Dittmaier, Roth, Wieders '05
no visible distortion of shape w.r.t. DPA at LEP2 energies

W-production angle distribution at $\sqrt{s}=500 \mathrm{GeV}$

Differential cross section:
$\left.\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta_{\mathrm{w}}+} \mathrm{fb}^{2}\right]$

relative corrections (G_{μ}-scheme):

significant distortion of shape w.r.t. DPA at ILC energies
\hookrightarrow important for TGC studies at ILC

W-invariant-mass distribution at $\sqrt{s}=200 \mathrm{GeV}$

Differential cross section: (photon recombination applied)

relative corrections (G_{μ}-scheme):

Denner, Dittmaier, Roth, Wieders '05
small distortion of shape w.r.t. DPA at LEP2 energies
\hookrightarrow shift in M_{W} in direct reconstruction ?

Conclusions

Complete $\mathcal{O}(\alpha)$ correction for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu_{\tau} \tau^{+} \mu^{-} \bar{\nu}_{\mu}, \mathrm{u} \overline{\mathrm{d}} \mu^{-} \bar{\nu}_{\mu}, \mathrm{ud} \overline{\mathrm{d}} \overline{\mathrm{c}}$ calculated

- calculation required new techniques
- complex-mass scheme for finite width at one loop
- new reduction algorithms for matrix elements
\bullet new tensor-integral reductions
- theoretical uncertainty at threshold reduced from $\sim 2 \%$ to a few 0.1% remaining theoretical uncertainties dominated by
- electroweak effects beyond $\mathcal{O}(\alpha)$, e.g. $\left(\frac{\alpha}{\pi}\right)^{2} \ln \left(\frac{m_{\mathrm{e}}^{2}}{s}\right) \sim 0.1 \%$
- QCD effects
first established calculation of $\mathcal{O}(\alpha)$ corrections for $2 \rightarrow 4$ process
other progress in $2 \rightarrow 4$ processes by GRACE-loop
- progress report on calculation for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{u} \overline{\mathrm{d}} \mu^{-} \bar{\nu}_{\mu}$
- preliminary results for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu \bar{\nu} H H$

Other renormalization constants

Complex renormalization of photon and Z boson similar to W boson charge renormalization constant

$$
\frac{\delta e}{e}=\frac{1}{2} \Sigma^{\prime A A}(0)-\frac{s_{\mathrm{w}}}{c_{\mathrm{w}}} \frac{\Sigma_{\mathrm{T}}^{A Z}(0)}{\mu_{\mathrm{Z}}^{2}}
$$

becomes complex via $\mu_{\mathrm{Z}}^{2}, \mu_{\mathrm{W}}^{2}$ and $s_{\mathrm{w}}, c_{\mathrm{w}} \Rightarrow$ complex renormalized charge at one loop: imaginary part of renormalized charge drops out beyond one loop: imaginary part of renormalized charge enters renormalization of massless fermions:

$$
\delta \mathcal{Z}_{f, \sigma}=-\Sigma^{f, \sigma}\left(m_{f}^{2}\right)-m_{f}^{2}\left[\Sigma^{\prime f, \mathrm{R}}\left(m_{f}^{2}\right)+\Sigma^{\prime f, \mathrm{~L}}\left(m_{f}^{2}\right)+2 \Sigma^{\prime f, \mathrm{~S}}\left(m_{f}^{2}\right)\right]
$$

for both fermions and anti-fermions
$\Sigma^{\prime f}$ involves no absorptive parts but is complex owing to complex parameters complex-mass scheme can be generalized to

- background-field formalism
- unstable Higgs boson and unstable fermions (top quark)

Real corrections

Matrix elements

- evaluated with Weyl-van der Waerden spinor technique \hookrightarrow compact expressions
- checked numerically against MadGraph (for $\Gamma=0$)
soft and collinear singularities: treated with two methods
- dipole subtraction formalism
- phase-space slicing

numerical agreement within 0.03\%

leading-log ISR beyond $\mathcal{O}(\alpha)$

- included using structure functions
phase-space integration
- Monte Carlo integration \Rightarrow distributions available

Input parameter schemes

M_{W} fixed by its experimental value
3 schemes for alpha:

$$
\sigma_{0} \propto \alpha^{2}
$$

- $\alpha(0)$ scheme: input $\alpha(0), M_{\mathrm{Z}}, M_{\mathrm{W}}, M_{\mathrm{H}}, m_{f}$ large universal corrections owing to
\diamond running of α ($\Delta \alpha \sim 6 \% \Rightarrow 12 \%$ correction)
\diamond renormalization of weak mixing angle $c_{\mathrm{w}}=M_{\mathrm{W}} / M_{\mathrm{Z}}$

$$
\left(\delta s_{\mathrm{w}}^{2} / s_{\mathrm{w}}^{2}=c_{\mathrm{w}}^{2} \Delta \rho / s_{\mathrm{w}}^{2} \sim 3 \%, \quad \Delta \rho=3 G_{\mu} m_{\mathrm{t}}^{2} /(8 \sqrt{2} \pi)\right)
$$

- $\alpha\left(M_{\mathrm{Z}}\right)$ scheme: input $\alpha\left(M_{\mathrm{Z}}\right), M_{\mathrm{Z}}, M_{\mathrm{W}}, M_{\mathrm{H}}, m_{f}$ absorbs universal corrections from running of α independent of light quark masses difference in relative corrections $\delta^{\alpha\left(M_{\mathrm{z}}\right)}=\delta^{\alpha(0)}-2 \Delta \alpha \approx \delta^{\alpha(0)}-0.12$
- $\alpha_{G_{\mu}}$ scheme: input $G_{\mu}, M_{\mathrm{Z}}, M_{\mathrm{W}}, M_{\mathrm{H}}, m_{f}$
amounts to use of $\alpha_{G_{\mu}}=\frac{\sqrt{2} G_{\mu} s_{\mathrm{w}}^{2} M_{\mathrm{w}}^{2}}{\pi}=\frac{\alpha(0)}{1-\Delta r}$
absorbs also corrections from renormalization of weak mixing angle $\delta^{\alpha G_{\mu}}=\delta^{\alpha(0)}-2 \Delta r \approx \delta^{\alpha(0)}-0.06$

Numerical results

Total cross section without cuts (based on 10^{7} weighted events)

Differential cross sections with cuts (based on 10^{8} weighted events)
cut and recombination procedure

1. all bremsstrahlung photons within a cone of 5 degrees around the beams are treated as invisible.
2. the invariant masses $M_{f \gamma}$ of the photon with each of the charged final-state fermions are calculated. If the smallest $M_{f \gamma}$ is smaller than $M_{\text {rec }}=25 \mathrm{GeV}$ or if the energy of the photon is smaller than 1 GeV , the photon is combined with the charged final-state fermion that leads to the smallest $M_{f \gamma}$.
3. all events are discarded in which one of the charged final-state fermions is within a cone of 10 degrees around the beams (after a possible recombination with a photon).

Total cross section without cuts

process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \nu_{\tau} \tau^{+} \mu^{-} \bar{\nu}_{\mu}$		Denner, Dittmaier, Roth, Wieders '05			
\sqrt{s} / GeV	Born(FW)	Born(CMS)	IBA	DPA	ee4f
161	$50.04(2)$	$50.01(2)$	$37.18(2)$	$37.08(2)$	$37.95(2)$
		$[-0.06 \%]$	$[-25.67(6) \%]$	$[-25.90(3) \%]$	$[-24.12(4) \%]$
170	$160.53(6)$	$160.44(6)$	$129.12(6)$	$129.17(6)$	$129.23(6)$
		$[-0.06 \%]$	$[-19.52(5) \%]$	$[-19.53(3) \%]$	$[-19.45(3) \%]$
200	$220.41(9)$	$220.29(9)$	$201.13(9)$	$200.04(10)$	$199.21(10)$
		$[-0.06 \%]$	$[-8.70(6) \%]$	$[-9.24(2) \%]$	$[-9.57(3) \%]$
500	$86.95(5)$	$86.90(5)$	$92.79(5)$	$89.81(6)$	$89.13(6)$
		$[-0.06 \%]$	$[+6.78(9) \%]$	$[+3.29(3) \%]$	$[+2.57(4) \%]$
1000	$33.35(2)$	$33.33(2)$	$38.04(4)$	$35.76(3)$	$35.37(3)$
		$[-0.06 \%]$	$[+14.12(14) \%]$	$[+7.21(5) \%]$	$[+6.12(6) \%]$

- \mid ee $4 \mathrm{f}-\mathrm{IBA} \mid \sim 2 \%$ for $\sqrt{s} \lesssim 170 \mathrm{GeV}$
- \mid ee $4 \mathrm{f}-\mathrm{DPA} \mid \sim 0.5 \%$ for $170 \mathrm{GeV} \lesssim \sqrt{s} \lesssim 210 \mathrm{GeV}$
- |ee4f - DPA| $\sim 0.7 \%$ for $\sqrt{s} \sim 500 \mathrm{GeV}$
\hookrightarrow agreement with error estimates of DPA and IBA

