Techniques for one-loop tensor integrals in many-particle processes

Stefan Dittmaier MPI Munich

in collaboration with A. Denner

(based on hep-ph/0509141)

Contents

- **1** Introduction
- 2 Preliminaries and Passarino–Veltman reduction
- 3 A seminumerical method for 3- and 4-point integrals
- 4 Expansion methods for 3- and 4-point integrals
- 5 Reduction schemes for 5- and 6-point integrals
- 6 Conclusions

1 Introduction

Many-particle (# = 5, 6, ...) processes are important at LHC and ILC, but only very few processes accurately known:

• $2 \rightarrow 3$ processes

 $e^+e^- \rightarrow \nu \bar{\nu} H$, t $\bar{t}H$, $e\bar{e}H$, ZHH, $\nu \bar{\nu} \gamma$, $\gamma \gamma \rightarrow t\bar{t}H$

NLO EW/QCD: GRACE-loop, Denner et al., You et al., Chen et al., Zhang et al. '02–'04

 $pp \rightarrow 3jets, \gamma\gamma+jet, V+2jets, t\bar{t}H, b\bar{b}H, b\bar{b}V$

NLO QCD: Bern et al., Kunszt et al., Kilgore/Giele, Campbell et al., Nagy, Del Duca et al., Campbell/Ellis, Beenakker et al., Dawson et al., S.D. et al. '96–'05

- $1 \rightarrow 4$ processes
 - $H \rightarrow 4$ fermions: NLO QED

NLO EW

 \hookrightarrow talk of C. Carloni-Calame

← talk of A. Bredenstein

- $2 \rightarrow 4$ processes
 - $e^+e^- \rightarrow \nu \bar{\nu} HH$:

preliminary NLO EW GRACE-loop '04/'05

 \hookrightarrow talk of Y. Kurihara

 $e^+e^- \rightarrow 4$ fermions (CC): complete

complete NLO EW

Denner, S.D., Roth, Wieders, '05

← talk of A. Denner

(J.Huston, Les Houches 2005)

Experimental priority list

- Note have to specify how inclusive final state is
 - ▲ what cuts will be made?
 - how important is b mass for the observables?
- How uncertain is the final state?
 - ▲ what does scale uncertainty look like at tree level?
 - new processes coming in at NLO?
- Some information may be available from current processes
 - pp->tT j may tell us something about pp->tTbB?
 - ⊾ j=g->bB
 - CKKW may tell us something about higher multiplicity final states

- 1. pp->WW jet
- 2. pp->tT bB
 - background to tTH
- 3. pp->tT + 2 jets
 - 1. background to tTH
- 4. pp->WWbB
- 5. pp->V V + 2 jets
 - background to WW->H >WW
- 6. pp->V + 3 jets
 - 1. beneral background to new physics
- 7. pp->V V V
 - 1. background to SUSY trilepton

Beyond the SM Workshop at Columbia

Complications in corrections to many-particle processes

- huge amount of algebra, long final expressions
 - \hookrightarrow computer algebra / automization
- multi-dimensional phase-space integration
 - \hookrightarrow Monte Carlo techniques
- complicated structure of singularities and matching of virtual and real corrections
 - \hookrightarrow subtraction and slicing techniques
- treatment of unstable particles, issue of complex masses
 - \hookrightarrow "complex-mass scheme" recently proposed for higher orders

Denner, S.D., Roth, Wieders, '05

numerically stable evaluation of one-loop integrals with up to 5,6,... external legs
 → subject of this talk

Some comments on one-loop techniques:

 Reduction techniques: tensors → scalar integrals = basis integrals proposed by Brown/Feynman '52 systematically worked out by Passarino/Veltman '79 subsequently modified by many authors

Stuart et al. '88/'90; v.Oldenborgh/Vermaseren '90; Ezawa et al. '92; Denner '93; Campbell et al. 96; Devaraj/Stuart '97; GRACE-loop '03; del Aguila/Pittau '04; v.Hameren et al. '05; Denner/S.D. '05

• Reduction techniques: tensors \rightarrow integrals in $D \neq 4$ dimensions

proposed by Davydychev '91 and further developed by others Bern et al. '93; Tarasov '96; Fleischer et al. '99; Binoth et al. '99/'05; Duplančić/Nižić '03; Giele et al. '04; R.K.Ellis et al. '05

master integrals for massive case missing

• Reductions for $N \geq 5$ using $D \rightarrow 4$

proposed by Melrose '65 for scalar integrals

subsequently generalized to tensors by other authors

v.Neerven/Vermaseren '84; v.Oldenborgh/Vermaseren '90; Campbell et al. 96; Davydychev '91; Bern et al. '93; Denner '93; Suzuki et al. '02; Tramontano '02; Denner/S.D. '02/'05; GRACE-loop '02/'03

• Numerical techniques

various proposal by several authors

Ferroglia et al. '02; Binoth et al. '02/'05; Nagy/Soper '03 de Doncker et al. 04; Kurihara/Kaneko '05; Denner/S.D. '05

but not yet successfully applied to complicated physical processes

2 Preliminaries and Passarino–Veltman reduction

General N-point one-loop tensor integrals of rank P

N denominator factors $1/N_k$: $N_k = (q + p_k)^2 - m_k^2 + i\epsilon, \quad p_0 = 0$ $k = 0, \dots, N - 1$

Integral definition:

$$T^{N,\mu_1...\mu_P} = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \, \frac{q^{\mu_1} \cdots q^{\mu_P}}{N_0 N_1 \dots N_{N-1}} \qquad (A \equiv T^1, B \equiv T^2, C \equiv T^3, \text{etc.})$$

Decomposition of tensor integral into covariants:

$$T^{N,\mu_{1}...\mu_{P}} = \sum_{i_{1},...,i_{P}=1}^{N-1} p_{i_{1}}^{\mu_{1}} \dots p_{i_{P}}^{\mu_{P}} T_{i_{1}...i_{P}}^{N} + \sum_{i_{3},...,i_{P}=1}^{N-1} \{g^{\mu_{1}\mu_{2}} p_{i_{3}}^{\mu_{3}} \dots p_{i_{P}}^{\mu_{P}} + \dots\} T^{N}_{00i_{3}...i_{P}}$$
$$+ \sum_{i_{5},...,i_{P}=1}^{N-1} \{ggp \dots p\}_{i_{5}...i_{P}}^{\mu_{1}...\mu_{P}} T^{N}_{0000i_{5}...i_{P}} + \dots$$

 \hookrightarrow Aim: calculate tensor coefficients $T_{i_1...i_P}^N$, etc. in terms of few basis integrals

Basic relations among coefficients upon "contraction and cancellation":

(i) Contraction with momenta

$$2p_kq = \underbrace{\left[\left(q+p_k\right)^2 - m_k^2\right]}_{=N_k} - \underbrace{\left[q^2 - m_0^2\right]}_{=N_0} - \underbrace{\left[p_k^2 - m_k^2 + m_0^2\right]}_{\equiv f_k}$$

- $\hookrightarrow \text{ relation between tensors } [``(k)" \text{ means propagator denominator } N_k \text{ omitted}]$ $2p_k^{\mu_1} T_{\mu_1 \dots \mu_P}^N = T_{\mu_2 \dots \mu_P}^{N-1}(k) T_{\mu_2 \dots \mu_P}^{N-1}(0) f_k T_{\mu_2 \dots \mu_P}^N$
- $\hookrightarrow \text{ relation between coefficients} \qquad [``\hat{i}'' \text{ means index } i \text{ omitted}] \\ \sum_{m=1}^{N-1} 2(p_k p_m) T_{mi_2...i_P}^N + 2 \sum_{r=2}^{P} \delta_{ki_r} T_{00i_2...\hat{i}_r...i_P}^N + f_k T_{i_2...i_P}^N = (T^{N-1} \text{ terms})$
- (ii) Contraction with metric tensor

$$q^{2} = \underbrace{\left[q^{2} - m_{0}^{2}\right]}_{=N_{0}} + m_{0}^{2}$$

 \hookrightarrow relation between tensors

$$g^{\mu_1\mu_2}T^N_{\mu_1\mu_2\dots\mu_P} = T^{N-1}_{\mu_3\dots\mu_P}(0) + m_0^2 T^N_{\mu_3\dots\mu_P}$$

 \hookrightarrow relation between coefficients

$$\sum_{n,m=1}^{N-1} 2(p_n p_m) T_{nmi_3...i_P}^N + \text{const.} \times T_{00i_3...i_P}^N - 2m_0^2 T_{i_3...i_P}^N = (T^{N-1} \text{ terms})$$

Passarino–Veltman reduction

Basic relations yield recursive solution for tensor coefficients:

$$T_{00i_3...i_P}^N \propto 2m_0^2 \underbrace{T_{i_3...i_P}^N}_{\text{rank }P-2} + \sum_{n=1}^{N-1} f_n \underbrace{T_{ni_3...i_P}^N}_{\text{rank }P-1} + (T^{N-1} \text{ terms}),$$

$$T_{i_{1}...i_{P}}^{N} = \sum_{n=1}^{N-1} (Z^{-1})_{i_{1}n} \left[-f_{n} \underbrace{T_{i_{2}...i_{P}}^{N}}_{\operatorname{rank} P-1} - 2 \sum_{r=2}^{P} \delta_{ni_{r}} \underbrace{T_{00i_{2}...\hat{i}_{r}...i_{P}}^{N}}_{\operatorname{rank} P-1} + (T^{N-1} \operatorname{terms}) \right], \quad i_{1} \neq 0$$

 \hookrightarrow recursive calculation of $T_{i_1...i_P}^N$ from scalar integral T_0^N and $T_{i_2...i_P}^{N-1}$: $T_0^N =$ basis integral $\rightarrow T_{i_1}^N \rightarrow T_{i_1i_2}^N \rightarrow T_{i_1i_2i_3}^N \rightarrow \dots$

But: relations involve inverse Z^{-1} of Gram matrix $Z = \begin{pmatrix} 2p_1p_1 & \dots & 2p_1p_N \\ \vdots & \ddots & \vdots \\ 2p_Np_1 & \dots & 2p_Np_N \end{pmatrix}$

 \hookrightarrow potential instabilities for $det(Z) \to 0$

Example: 4-point tensor integrals

scalar integral $= D_0$

$$D^{\mu} = \sum_{i=1}^{3} p_i^{\mu} D_i$$

$$D^{\mu\nu} = \sum_{i,j=1}^{3} p_i^{\mu} p_j^{\nu} D_{ij} + g^{\mu\nu} D_{00}$$

$$D^{\mu\nu\rho} = \sum_{i,j,k=1}^{3} p_{i}^{\mu} p_{j}^{\nu} p_{k}^{\rho} D_{ijk} \qquad + \sum_{i=1}^{3} \{g^{\mu\nu} p_{i}^{\rho} + \cdots \} D_{00i}$$

step 1

•

 D_{00i}

step 2a

 D_{ijkl}

:

 D_{00i}

 D_{00ij}

2

•

 D_{ijkl}

- .

 D_{00ij}

- J0ij
- :

- D_{0000} .
 - .
 - •

RADCOR05, Shonan Village, Japan, 2005

step 3a

Ç\$

step 4a

GA

step 4b

step 4c

3 A seminumerical method for 3- and 4-point integrals

Alternative form of basic PV relations: example of 4-point functions

$$\underbrace{\begin{pmatrix} 2m_0^2 & f_1 & f_2 & f_3 \\ f_1 & | & - & - \\ f_2 & | & Z \\ f_3 & | & - & - \\ \end{bmatrix}}_{\equiv X} \begin{pmatrix} D_{i_2...i_P} \\ D_{1i_2...i_P} \\ D_{2i_2...i_P} \\ D_{3i_2...i_P} \end{pmatrix} = \begin{pmatrix} \operatorname{const.} \times D_{00i_2...i_P} \\ -2\sum_{r=2}^P \delta_{1i_r} D_{00i_2...i_r...i_P} \\ -2\sum_{r=2}^P \delta_{2i_r} D_{00i_2...i_r...i_P} \\ -2\sum_{r=2}^P \delta_{3i_r} D_{00i_2...i_r...i_P} \end{pmatrix} + C's$$

 \hookrightarrow recursive reduction of coefficients $D_{i_1 i_2 \dots i_P}$ from $D_{00 i_2 \dots i_P}$

Basis integral $D_{\underbrace{0...0}_{2P>2}}$ can be safely done numerically in Feynman-parameter space: e.g. for P = 3: $D_{000000} = D_{000000} \Big|_{UV-div} - \frac{1}{8} \int_{\sigma_3} d^3x \ (A+1) \ln (A-i\epsilon)$ A = quadratic form in Feynman parameters x_i

Reduction with modified Cayley determinants up to rank 2: step 0

Reduction with modified Cayley determinants up to rank 2: step 1a

Reduction with modified Cayley determinants up to rank 2: step 1b

Reduction with modified Cayley determinants up to rank 2: step 2a

Reduction with modified Cayley determinants up to rank 2: step 2b

Reduction with modified Cayley determinants up to rank 2: step 2c

A typical example with small Gram determinant:

Comments:

• Basis integral $D_{0...0}$ enters with prefactor $\propto \frac{\det(Z)}{\det(X)}$

- \hookrightarrow impact of $D_{0...0}$ and of its numerical error suppressed for small det(Z)
- Limitation: reduction involves inverse matrix X^{-1}
 - \hookrightarrow potential instability if modified Cayley determinant det $X \to 0$ $(\det X = 0$ is necessary condition for Landau singularity)
- If appropriate [for small det(X)] more coefficients (D_{0000} , D_{0000i} , etc.) can be evaluated numerically
 - \hookrightarrow accumulation of instabilities can be somewhat suppressed

- 4 Expansion methods for 3- and 4-point integrals
- 4.1 Expansion for small Gram determinant

PV relations rewritten again:

$$\tilde{X}_{0j} D_{i_1 \dots i_P} = 2 \sum_{n=1}^{N-1} \tilde{Z}_{jn} \sum_{r=1}^{P} \delta_{ni_r} D_{00i_1 \dots \hat{i}_r \dots i_P} + \det(Z) D_{ji_1 \dots i_P} + C's$$

$$\begin{split} \tilde{Z}_{kl} D_{00i_1...i_P} &\propto \sum_{\substack{n,m=1\\n,m=1}}^{N-1} \tilde{\tilde{Z}}_{(kn)(lm)} \bigg[f_n f_m D_{i_1...i_P} + 2 \sum_{\substack{r=1\\r=1}}^{P} (f_n \delta_{mi_r} + f_m \delta_{ni_r}) D_{00i_1...\hat{i}_r...i_P} \\ &+ 4 \sum_{\substack{r,s=1\\r\neq s}}^{P} \delta_{ni_r} \delta_{mi_s} D_{0000i_1...\hat{i}_r...\hat{i}_s...i_P} \bigg] + 2m_0^2 \tilde{Z}_{kl} D_{i_1...i_P} - \det(Z) D_{kli_1...i_P} + C's \end{split}$$

 $\tilde{X}, \tilde{Z}, \tilde{\tilde{Z}}$ = minors (subdeterminants) of X and Z (j, k, l chosen appropriately)

- $\hookrightarrow \text{ Coefficients } \underbrace{D_{ij...}}_{\text{rank }P} \text{ and } \underbrace{D_{00i...}}_{\text{rank }P+1} \text{ from lower-rank terms } \underbrace{D_{ij...}}_{\text{rank }P-1} \text{ and } \underbrace{D_{00i...}}_{\text{rank }P}$ $up \text{ to suppressed higher-rank terms } \det(Z) \underbrace{D_{ij...}}_{\text{rank }P+1}$
- \hookrightarrow Equations suited for iteration for small det(Z):

D's directly from *C*'s up to terms suppressed by det(Z)

Expansion for small Gram determinant: step 0

Expansion for small Gram determinant: step 1a

 D_{ijkl}

•

D_{00ij}	

 D_{0000}

•

•

÷

Expansion for small Gram determinant: step 1b

 D_{ijkl}

 D_{00ij}

- D_{0000}
- .
- .
- •

RADCOR05, Shonan Village, Japan, 2005

Expansion for small Gram determinant: step 1.0

D_{00ij}	

- .
- . .

Expansion for small Gram determinant: step 2a

Expansion for small Gram determinant: step 2b

Expansion for small Gram determinant: step 2.1a

Expansion for small Gram determinant: step 2.1b

Expansion for small Gram determinant: step 2.0

Expansion for small Gram determinant: step 3a

Expansion for small Gram determinant: step 3b

Expansion for small Gram determinant: step 3c

Expansion for small Gram determinant: step 3.2a

Expansion for small Gram determinant: step 3.2b

Expansion for small Gram determinant: step 3.1a

Expansion for small Gram determinant: step 3.1b

Expansion for small Gram determinant: step 3.0

Comments:

- Indices j, k, l of \tilde{X}_{0j} and \tilde{Z}_{kl} can be chosen to optimize stability
- For $e^+e^- \rightarrow 4f$ iteration up to step 5 was sufficient, but number of iterations not restricted
- Iteration does not converge if
 - \diamond either all \tilde{Z}_{kl} are small

happens most frequently if $Z \rightarrow 0$

- \hookrightarrow new expansion about $Z \to 0$ possible (worked out!)
- \circ or all \tilde{X}_{0i} are small [which implies $det(X) \to 0$]
 - \hookrightarrow new double expansion in small det(Z) and \tilde{X}_{0i} (described next!)

4.2 Expansion for small Gram and modified Cayley determinants

PV relations rewritten again:

$$\begin{split} \sum_{n=1}^{N-1} \tilde{Z}_{kn} \sum_{r=1}^{P} \delta_{ni_r} D_{00i_1...\hat{i}_r...i_P} &\propto \tilde{X}_{k0} D_{i_1...i_P} - \det(Z) D_{ki_1...i_P} + C's, \\ \tilde{X}_{ij} D_{i_1...i_P} &= \text{const.} \times \tilde{Z}_{ij} D_{00i_1...i_P} - 2 \sum_{m,n=1}^{N-1} \tilde{Z}_{(in)(jm)} f_n \sum_{r=1}^{P} \delta_{mi_r} D_{00i_1...\hat{i}_r...i_P} \\ &+ \tilde{X}_{0j} D_{ii_1...i_P} + C's \end{split}$$
Coefficients
$$\underbrace{D_{00ij...}}_{\text{rank } P} \text{ from } C's \text{ up to suppressed terms } \underbrace{D_{ij...}}_{\text{rank } P} \text{ and } \underbrace{D_{j...}}_{\text{rank } P-1} \end{aligned}$$
Coefficients
$$\underbrace{D_{ij...}}_{\text{rank } P} \text{ from } \underbrace{D_{00j...}}_{\text{rank } P+1} \text{ and } \underbrace{D_{00ij...}}_{\text{rank } P+2} \\ \text{ up to suppressed higher-rank terms } \underbrace{D_{ijk...}}_{\text{rank } P+1} \end{aligned}$$
Equations suited for iteration for small det(Z) and \tilde{X}_{0j} :
$$D's \text{ directly from } C's \text{ up to terms suppressed by det}(Z) \text{ or } \tilde{X}_{0j} \end{split}$$

 \hookrightarrow

 \hookrightarrow

Expansion for small Gram and modified Cayley determinants: step 0a

Expansion for small Gram and modified Cayley determinants: step 0b

Expansion for small Gram and modified Cayley determinants: step 0c

Expansion for small Gram and modified Cayley determinants: step 0d

Expansion for small Gram and modified Cayley determinants: step 1a

Expansion for small Gram and modified Cayley determinants: step 1b

Expansion for small Gram and modified Cayley determinants: step 1c

Expansion for small Gram and modified Cayley determinants: step 1d

Expansion for small Gram and modified Cayley determinants: step 1e

Expansion for small Gram and modified Cayley determinants: step 1f

Expansion for small Gram and modified Cayley determinants: step 1.0a

Expansion for small Gram and modified Cayley determinants: step 1.0b

Expansion for small Gram and modified Cayley determinants: step 1.0c

Expansion for small Gram and modified Cayley determinants: step 1.0d

A very delicate example with small Gram and mod. Cayley determinants:

Box integral

appears, e.g., in subgraph of diagram

Gram det.: det(Z), det(X) $\rightarrow 0$ if $s_{\mu\bar{\nu}d} \rightarrow s$ and $s_{\mu\bar{\nu}u} \rightarrow s_{\mu\bar{\nu}}$

Numerical comparison:

Reduction schemes for 5- and 6-point integrals 5

reduce a determinant that is zero in 4 space-time dimensions General idea: \hookrightarrow relation between 5-(6-)point and 4-(5-)point integrals

5.1 5-point integrals

Starting point:

$$\int \mathcal{E} = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \, \frac{q^{\mu_1} \cdots q^{\mu_P}}{N_0 N_1 \cdots N_4} \begin{cases} q^{\mu} & -2q^2 & 2qp_1 & \dots & 2qp_4 \\ 0 & 2m_0^2 & f_1 & \dots & f_4 \\ p_1^{\mu} & -2p_1 q & 2p_1 p_1 & \dots & 2p_1 p_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_4^{\mu} & -2p_4 q & 2p_4 p_1 & \dots & 2p_4 p_4 \end{cases}$$

Т

$$= 2m_0^2 \det(Z)(g_{\alpha}^{\mu} - g_{(4)}_{\alpha}^{\mu})E^{\alpha\mu_1\dots\mu_P}$$

$$+ 2\sum_{n=1}^{4} \tilde{X}_{n0} \Big[p_n^{\mu}(\underbrace{g_{\alpha\beta}}{D\text{-dim}} - \underbrace{g_{(4)}_{\alpha\beta}}{4\text{-dim (built of momenta)}}) - p_{n,\beta}(g_{\alpha}^{\mu} - g_{(4)}_{\alpha}^{\mu}) \Big] E^{\alpha\beta\mu_1\dots\mu_P}$$

$$= \begin{cases} \mathcal{O}(D-4) & \text{for } P \leq 3\\ \text{finite, but simply calculable for } P > 3 \end{cases}$$

Reduction of determinant in momentum space (simple manipulations)

 \hookrightarrow propagator cancellations lead to 4-point integrals

$$\int \mathcal{E} = \det(X) E^{\mu\mu_1...\mu_P} - \sum_{n,m=1}^{4} \tilde{X}_{mn} p_m^{\mu} \left[D^{\mu_1...\mu_P}(n) - D^{\mu_1...\mu_P}(0) \right] - \sum_{n=1}^{4} \tilde{X}_{n0} \left[-p_n^{\mu} D^{\mu_1...\mu_P}(0) + \mathcal{D}^{\mu\mu_1...\mu_P}(n) \right] + \sum_{n=1}^{4} \mathcal{D}^{\alpha\mu_1...\mu_P}(n) \sum_{m,l=1}^{4} 2p_{m,\alpha} p_l^{\mu} \tilde{X}_{(ln)(0m)}$$

(similar result recently obtained by Binoth et al. '05)

 \hookrightarrow Tensor coefficients E_{\dots} read off upon comparing coefficients of covariants

Comments:

• reduction of rank: $E^{\mu\mu_1\dots\mu_P} \rightarrow \operatorname{rank}(P+1)$

D's / \mathcal{D} 's \rightarrow directly obtained from rank-P integrals

- no inverse Gram determinant, but $E^{\mu\mu_1...\mu_P} = [...]/\det(X)$
- reduction works for massive/massless case in any IR regularization

Explicit results for 5-point tensor coefficients:

$$\det(X)E_{i_{1}} = \sum_{n=1}^{4} \tilde{X}_{i_{1}n} \Big[D_{0}(n) - D_{0}(0) \Big] - \tilde{X}_{i_{1}0}D_{0}(0),$$

$$\det(X)E_{00} = \sum_{n=1}^{4} \tilde{X}_{n0} \Big[D_{00}(n) - D_{00}(0) \Big],$$

$$2\det(X)E_{i_{1}i_{2}} = \left\{ \sum_{n=1}^{4} \tilde{X}_{i_{1}n} \Big[D_{(i_{2})n}(n)\bar{\delta}_{i_{2}n} - D_{i_{2}}(0) \Big] - \tilde{X}_{i_{1}0}D_{i_{2}}(0) - 2\sum_{n=1}^{4} \tilde{X}_{(i_{1}n)(0i_{2})} \Big[D_{00}(n) - D_{00}(0) \Big] \right\} + (i_{1} \leftrightarrow i_{2}),$$

etc., explicitly worked out up to rank 5

Scalar integral via method of Melrose '65 (Denner '93; Denner, S.D. '02):

$$det(X)E_0 = -\sum_{n=0}^4 det(Y_n)D_0(n), \quad Y_n = kinematical matrices related to X$$

5.2 6-point integrals

Starting point:

point:

$$\int \mathcal{F} = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \frac{q^{\mu_1} \cdots q^{\mu_P}}{N_0 N_1 \cdots N_5} \begin{cases} q^{\mu} & 2qp_1 & \dots & 2qp_5 \\ p_1^{\mu} & 2p_1 p_1 & \dots & 2p_1 p_5 \\ \vdots & \vdots & \ddots & \vdots \\ p_{k-1}^{\mu} & 2p_{k-1} p_1 & \dots & 2p_{k-1} p_5 \\ 0 & f_1 & \dots & f_5 \\ 0 & f_1 & \dots & f_5 \\ p_{k+1}^{\mu} & 2p_{k+1} p_1 & \dots & 2p_{k+1} p_5 \\ \vdots & \vdots & \ddots & \vdots \\ p_5^{\mu} & 2p_5 p_1 & \dots & 2p_5 p_5 \end{cases}$$

$$= -\tilde{X}_{k0} F^{\alpha\mu_1 \cdots \mu_P} (g^{\mu}_{\alpha} - g_{(4)}{}^{\mu}_{\alpha})$$

$$= \int \mathcal{O}(D-4) \qquad \text{for } P \leq 6$$

finite, but simply calculable for P > 6

Reduction of determinant in momentum space

$$\int \mathcal{F} = -\tilde{X}_{k0} F^{\mu\mu_1...\mu_P} - \sum_{n,m=1}^{5} \tilde{\tilde{X}}_{(km)(0n)} p_m^{\mu} \Big[E^{\mu_1...\mu_P}(n) - E^{\mu_1...\mu_P}(0) \Big]$$

(index k can be chosen to optimize stability)

 \hookrightarrow reduction of rank and applicability for arbitrary IR regularization as in 5-pt case

Explicit results for 6-point tensor coefficients:

$$F_{i_{1}} = \sum_{n=1}^{5} c_{i_{1}n} \Big[E_{0}(n) - E_{0}(0) \Big],$$

$$F_{00} = 0,$$

$$F_{i_{1}i_{2}} = \frac{1}{2} \sum_{n=1}^{5} \Big\{ c_{i_{1}n} \Big[E_{(i_{2})_{n}}(n) \overline{\delta}_{i_{2}n} - E_{i_{2}}(0) \Big] + (i_{1} \leftrightarrow i_{2}) \Big\},$$

$$F_{00i_{1}} = \frac{1}{3} \sum_{n=1}^{5} c_{i_{1}n} \Big[E_{00}(n) - E_{00}(0) \Big],$$

$$F_{i_{1}i_{2}i_{3}} = \frac{1}{3} \sum_{n=1}^{5} \Big\{ c_{i_{1}n} \Big[E_{(i_{2})_{n}(i_{3})_{n}}(n) \overline{\delta}_{i_{2}n} \overline{\delta}_{i_{3}n} - E_{i_{2}i_{3}}(0) \Big] + (i_{1} \leftrightarrow i_{2}) + (i_{1} \leftrightarrow i_{3}) \Big\},$$

etc., c_{i_1n} = related to inverse matrix X^{-1}

Scalar integral via method of Melrose '65 (Denner '93):

 $det(X)F_0 = -\sum_{n=0}^{5} det(Y_n)E_0(n), \quad Y_n = kinematical matrices related to X$

6 Conclusions

NLO corrections to $2 \rightarrow 4$ processes are now feasible

• preliminary NLO EW results for $e^+e^- \rightarrow \nu \bar{\nu} HH$

GRACE-loop '04/'05

• complete NLO EW results for $e^+e^- \rightarrow 4$ fermions (CC) _{Denner, S.D., Roth, Wieders, '05}

Techniques described in this talk successfully applied to $e^+e^- \rightarrow 4f$

- 1- and 2-point integrals \rightarrow stable direct calculation
- 3- and 4-point integrals \rightarrow two hybrid methods
 - (i) Passarino–Veltman \oplus seminumerical method \oplus analytical special cases
 - (ii) Passarino–Veltman \oplus expansions in small Gram and other kin. determinants
- 5- and 6-point integrals
 - \hookrightarrow stable reduction to lower-point integrals without Gram determinants
- \Rightarrow Techniques ready for further applications

(dim. regularization for IR singularities possible; complex masses supported)

Practical experience

- Phase-space integration reveals weaknesses of methods.
- Power + reliability of techniques can only be assessed via non-trivial applications !

