Antenna Subtraction at NNLO

Thomas Gehrmann

Universität Zürich

in collaboration with A. Gehrmann–De Ridder, E.W.N. Glover

RADCOR 2005

Outline

Jet observables

- Jets in perturbation theory
- Antenna subtraction at NLO
- Antenna subtraction at NNLO
 - Double real radiation
 - Single unresolved loop subtraction
- Different antenna types
- Outlook

Jet Observables

Experimentally:

- **P** major testing ground of QCD in e^+e^- annihilation
- measurement of the 3–Jet production rate and related event shape observables allows a precise determination of α_s
- current error on α_s from jet observables dominated by theoretical uncertainty:
 K. Long, ICHEP 2002

 $\alpha_s(M_Z) = 0.1202 \pm 0.0003(\text{stat}) \pm 0.0009(\text{sys})$ $\pm 0.0009(\text{had}) \pm 0.0047(\text{scale})$

Jet Observables

Theoretically:

Partons are combined into jets using the same jet algorithm (recombination procedure) as in experiment

NNLO

3 partons in 1 jet, 2 partons experimentally unresolved

Current state-of-the-art: NLO Need for NNLO:

- reduce error on α_s
- better matching of parton level and hadron level jet algorithm

Jets in Perturbation Theory

Infrared Poles cancel in the sum

Antenna Subtraction at NNLO - p.5

Real Corrections at NNLO

Infrared subtraction terms

 $m+2 \text{ partons} \rightarrow m \text{ jets:}$

- Double unresolved configurations:
 - triple collinear
 - double single collinear
 - soft/collinear
 - double soft
- J. Campbell, E.W.N. Glover; S. Catani, M. Grazzini

Issue: find subtraction functions which

- approximate full m + 2 matrix element in all singular limits
- are sufficiently simple to be integrated analytically

- Single unresolved configurations:
 - collinear
 - soft

NLO Antenna Subtraction

Structure of NLO *m*-jet cross section (subtraction formalism): Z. Kunszt, D. Soper

$$\mathrm{d}\sigma_{NLO} = \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NLO}^R - \mathrm{d}\sigma_{NLO}^S \right) + \left[\int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NLO}^S + \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NLO}^V \right]$$

d
$$\sigma^S_{NLO}$$
: local counter term for $\mathrm{d}\sigma^R_{NLO}$

Building block of $d\sigma_{NLO}^S$: NLO-Antenna function X_{ijk}^0 Normalised and colour-ordered 3-parton matrix element with 2 radiators and 1 radiated parton in between

(J. Campbell, M. Cullen, E.W.N. Glover; D. Kosower)

$$d\sigma_{NLO}^{S} = \mathcal{N} \sum_{m+1} d\Phi_{m+1}(p_1, \dots, p_{m+1}; q) \frac{1}{S_{m+1}}$$

$$\times \sum_{j} \frac{X_{ijk}^0}{M_{ijk}} |\mathcal{M}_m(p_1, \dots, \tilde{p}_I, \tilde{p}_K, \dots, p_{m+1})|^2 J_m^{(m)}(p_1, \dots, \tilde{p}_I, \tilde{p}_K, \dots, p_{m+1})$$

Dipole formalism (S. Catani, M. Seymour): two dipoles = one antenna

Antenna Subtraction at NNLO – p.7

NLO Antenna Subtraction

Phase space factorisation

 $\mathrm{d}\Phi_{m+1}(p_1,\ldots,p_{m+1};q) = \mathrm{d}\Phi_m(p_1,\ldots,\tilde{p}_I,\tilde{p}_K,\ldots,p_{m+1};q) \cdot \mathrm{d}\Phi_{X_{ijk}}(p_i,p_j,p_k;\tilde{p}_I+\tilde{p}_K)$

Integrated subtraction term (analytically)

$$|\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{X_{ijk}} X_{ijk}^{0} \sim |\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{3} |M_{ijk}^{0}|^{2}$$

can be combined with $\mathrm{d}\sigma_{NLO}^V$

Antenna Subtraction at NNLO - p.8

NNLO Infrared Subtraction

Structure of NNLO *m*-jet cross section:

$$\begin{split} \mathrm{d}\sigma_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^R - \mathrm{d}\sigma_{NNLO}^S \right) + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^S \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} \\ &+ \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NNLO}^{V,2} , \end{split}$$

- \checkmark d σ^{S}_{NNLO} : real radiation subtraction term for d σ^{R}_{NNLO}
- $\ \, {\rm d}\sigma^{VS,1}_{NNLO} : \ \, {\rm one-loop} \ \, {\rm virtual} \ \, {\rm subtraction} \ \, {\rm term} \ \, {\rm for} \ \, {\rm d}\sigma^{V,1}_{NNLO}$
- Image: $d\sigma_{NNLO}^{V,2}$: two-loop virtual corrections

Tree-level real radiation contribution to m jets at NNLO

$$d\sigma_{NNLO}^{R} = \mathcal{N} \sum_{m+2} d\Phi_{m+2}(p_1, \dots, p_{m+2}; q) \frac{1}{S_{m+2}}$$
$$\times |\mathcal{M}_{m+2}(p_1, \dots, p_{m+2})|^2 J_m^{(m+2)}(p_1, \dots, p_{m+2})$$

d Φ_{m+2} : full m+2-parton phase space

- $J_m^{(m+2)}$: ensures m+2 partons $\rightarrow m$ jets

Up to two partons can be theoretically unresolved (soft and/or collinear)

Building blocks of subtraction terms:

- products of two three-parton antenna functions
- single four-parton antenna function

- one unresolved parton (a)
 - three parton antenna function X_{ijk}^0 can be used (as at NLO)
 - this will not yield a finite contribution in all single unresolved limits
- second connected unresolved partons (b) second connected unresolved partons (b)
 - **four-parton antenna function** X_{ijkl}^0
- - strongly ordered product of non-independent three-parton antenna functions

product of independent three-parton antenna functions

Two colour-connected unresolved partons

$$d\sigma_{NNLO}^{S,b} = \mathcal{N} \sum_{m+2} d\Phi_{m+2}(p_1, \dots, p_{m+2}; q) \frac{1}{S_{m+2}}$$

$$\times \left[\sum_{jk} \left(X_{ijkl}^0 - X_{ijk}^0 X_{IKl}^0 - X_{jkl}^0 X_{iJL}^0 \right) \right]$$

$$\times |\mathcal{M}_m(p_1,\ldots,\tilde{p}_I,\tilde{p}_L,\ldots,p_{m+2})|^2 J_m^{(m)}(p_1,\ldots,\tilde{p}_I,\tilde{p}_L,\ldots,p_{m+2})$$

- $\begin{tabular}{ll} X_{ijkl}^0: four-parton tree-level antenna function contains all double unresolved $$ p_j, p_k$ limits of $|\mathcal{M}_{m+2}|^2$, but is also singular in single unresolved limits of p_j or p_k limits of p_j or p_k limits of $|\mathcal{M}_{m+2}|^2$. } \end{tabular}$
- $I = X_{ijk}^0 X_{IKl}^0$: cancels single unresolved limit in p_j of X_{ijkl}^0
- $I = X_{jkl}^0 X_{iKL}^0$: cancels single unresolved limit in p_k of X_{ijkl}^0
- **S** Triple-collinear, soft-collinear, double soft limits: $X_{ijk}^0 X_{IKl}^0, X_{jkl}^0 X_{iKL}^0 \to 0$
- Double single collinear limit: $X_{ijk}^0 X_{IKl}^0, X_{jkl}^0 X_{iKL}^0 \neq 0$ cancels with double single collinear limit of $d\sigma_{NNLO}^{S,a}$

Two colour-connected unresolved partons

Phase space factorisation

 $d\Phi_{m+2}(p_1,...,p_{m+2};q) = d\Phi_m(p_1,...,\tilde{p}_I,\tilde{p}_L,...,p_{m+2};q) \cdot d\Phi_{X_{ijkl}}(p_i,p_j,p_k,p_l;\tilde{p}_I+\tilde{p}_L)$

Integrated subtraction term (analytically)

$$|\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{X_{ijkl}} X_{ijkl}^{0} \sim |\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{4} |M_{ijkl}^{0}|^{2}$$

Four-particle inclusive phase space integrals are known A. Gehrmann–De Ridder, G. Heinrich, TG

One-loop real radiation

The m + 1-parton one-loop contribution to m-jet:

$$d\sigma_{NNLO}^{V,1} = \mathcal{N} \sum_{m+2} d\Phi_{m+1}(p_1, \dots, p_{m+1}; q) \frac{1}{S_{m+1}}$$
$$\times |\mathcal{M}_{m+1}^1(p_1, \dots, p_{m+1})|^2 J_m^{(m+1)}(p_1, \dots, p_{m+1})$$

with

$$\mathcal{M}_{m+1}^{1}(p_{1},\ldots,p_{m+1})|^{2} = 2\operatorname{Re}\left(\mathcal{M}_{m+1}^{\operatorname{loop}}(p_{1},\ldots,p_{m+1})\,\mathcal{M}_{m+1}^{tree,*}(p_{1},\ldots,p_{m+1})\right)$$

Two types of singularities

- renormalized one-loop $|\mathcal{M}_{m+1}^1|^2$ has explicit infrared poles
- one of the m+1 partons can become unresolved, producing implicit infrared poles

Requirements for virtual-real subtraction term

- cancel explicit infrared poles (a)
- **s** approximate $d\sigma_{NNLO}^{V,1}$ in all single unresolved limits (b)
 - remove oversubtracted explicit/implicit poles (c)

 $\mathrm{d}\sigma_{NNLO}^{VS,1} = \mathrm{d}\sigma_{NNLO}^{VS,1,a} + \mathrm{d}\sigma_{NNLO}^{VS,1,b} + \mathrm{d}\sigma_{NNLO}^{VS,1,c}$

Single unresolved loop subtraction

Subtraction of explicit poles

At NLO: $\int d\sigma^S_{NLO} + d\sigma^V_{NLO} =$ finite, therefore

 $d\sigma_{NNLO}^{VS,1,a} = -d\sigma_{NNLO}^{S,a} = -\mathcal{N} \sum_{m+1} d\Phi_{m+1}(p_1,\dots,p_{m+1};q) \frac{1}{S_{m+1}}$

$$\times \left[\sum_{ik} \mathcal{X}_{ijk}^{0}(s_{ik}) | \mathcal{M}_{m+1}(p_1, \dots, p_i, p_k, \dots, p_{m+1}) |^2 J_m^{(m+1)}(p_1, \dots, p_i, p_k, \dots, p_{m+1}) \right]$$

with integrated antenna function

Г

$$\mathcal{X}_{ijk}^0(s_{ik}) = \int \mathrm{d}\Phi_D X_{ijk}^0$$

 \longrightarrow can contain implicit infrared poles as one parton in $|\mathcal{M}_{m+1}|^2$ can be unresolved

Antenna Subtraction at NNLO - p.15

Single unresolved loop subtraction

Subtraction of single unresolved contributions

Single unresolved limit of one-loop amplitudes

$$Loop_{m+1} \xrightarrow{j \ unresolved} Split_{tree} \times Loop_m + Split_{loop} \times Tree_m$$

Z. Bern, L.D. Dixon, D. Dunbar, D. Kosower; S. Catani, M. Grazzini; D. Kosower, P. Uwer Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt Z. Bern, L.D. Dixon, D. Kosower; S. Badger, E.W.N. Glover Accordingly: $Split_{tree} \rightarrow X_{ijk}^{0}$, $Split_{loop} \rightarrow X_{ijk}^{1}$ $d\sigma_{NNLO}^{VS,1,b} = \mathcal{N} \sum_{m+1} d\Phi_{m+1}(p_{1}, \dots, p_{m+1}; q) \frac{1}{S_{m+1}}$ $\times \sum_{j} \left[X_{ijk}^{0} |\mathcal{M}_{m}^{1}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{K}, \dots, p_{m+1})|^{2} J_{m}^{(m)}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{K}, \dots, p_{m+1}) + X_{ijk}^{1} |\mathcal{M}_{m}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{K}, \dots, p_{m+1})|^{2} J_{m}^{(m)}(p_{1}, \dots, \tilde{p}_{I}, \tilde{p}_{K}, \dots, p_{m+1}) \right]$

Single unresolved loop subtraction

Subtraction of single unresolved contributions

 X_{ijk}^1 : one-loop three-parton antenna function

$$X_{ijk}^{1} = X_{ijk}^{1} = S_{ijk,IK} \frac{|\mathcal{M}_{ijk}^{1}|^{2}}{|\mathcal{M}_{IK}^{0}|^{2}} - X_{ijk}^{0} \frac{|\mathcal{M}_{IK}^{1}|^{2}}{|\mathcal{M}_{IK}^{0}|^{2}}$$

- Solution One-loop real radiation subtraction term $d\sigma_{NNLO}^{VS,1,b}$ correctly approximates one-loop m + 1-parton matrix element in all single unresolved limits
- Outside singular limits (m + 1 partons $\rightarrow m$ jets): $d\sigma_{NNLO}^{VS,1,b}$ yields explicit infrared poles (oversubtraction)

Colour-ordered antenna functions

Antenna functions

- colour-ordered pair of hard partons (radiators) with radiation in between
 - hard quark-antiquark pair
 - hard quark-gluon pair
 - hard gluon-gluon pair
- \square three-parton antenna \longrightarrow one unresolved parton
- **four-parton antenna** \longrightarrow two unresolved partons
- can be at tree level or at one loop
- all three-parton and four-parton antenna functions can be derived from physical matrix elements, normalised to two-parton matrix elements

Quark-antiquark

consider subleading colour (gluons photon-like)

$$|M_{q\bar{q}ggg}|^2(1,3,4,5,2) \xrightarrow{1\parallel 3} |M_{q\bar{q}gg}|^2(\widetilde{13},4,5,\widetilde{23}) \times X_{132}$$

with

$$X_{132} = \frac{|M_{q\bar{q}g}|^2}{|M_{q\bar{q}}|^2} \equiv A_3^0(1_q, 3_g, 2_{\bar{q}})$$

Quark-gluon

DOD g

 $|M_{q\bar{q}q\bar{q}g}|^2(1,3,4,5,2) \xrightarrow{3\parallel 4} |M_{q\bar{q}gg}|^2(\widetilde{13},\widetilde{34},5,2) \times X_{134}$

with hard radiators: quark $(\widetilde{13})$ and gluon $(\widetilde{34})$

 q^* : spin 1/2, colour triplet $q(\widetilde{13})$: spin 1/2, colour triplet $\widetilde{\sim}$

 $g(\widetilde{34})$: spin 1, colour octet

Off-shell matrix element: violates SU(3) gauge invariance

 q^{*}

Quark-gluon

Construct colour-ordered qg antenna function from SU(3) gauge-invariant decay: neutralino \rightarrow gluino + gluon (A. Gehrmann–De Ridder, E.W.N. Glover, TG)

 $\tilde{\chi}$: spin 1/2, colour singlet \tilde{g} : spin 1/2, colour octet g : spin 1, colour octet

Gluino \tilde{g} mimics quark and antiquark (same Dirac structure), but is octet in colour space

 $\tilde{\chi} \rightarrow \tilde{g}g$ described by effective Lagrangian H. Haber, D. Wyler

$$\mathcal{L}_{\rm int} = i\eta \overline{\psi}^a_{\tilde{g}} \sigma^{\mu\nu} \psi_{\tilde{\chi}} F^a_{\mu\nu} + (\text{h.c.})$$

Antenna function

$$X_{134} = \frac{|M_{\tilde{g}q'\bar{q}'}|^2}{|M_{\tilde{g}g}|^2} \equiv E_3^0(1_q, 3_{q'}, 4_{\bar{q}'})$$

Antenna Subtraction at NNLO - p.21

 $|M_{q\bar{q}gggg}|^2(1,3,4,5,2) \xrightarrow{3||4} |M_{q\bar{q}gg}|^2(1,\widetilde{34},\widetilde{45},2) \times X_{345}$

 $H \rightarrow gg$ described by effective Lagrangian F. Wilczek; M. Shifman, A. Vainshtein, V. Zakharov

$$\mathcal{L}_{\rm int} = \frac{\lambda}{4} H F^a_{\mu\nu} F^{\mu\nu}_a$$

Antenna function

$$X_{345} = \frac{|M_{ggg}|^2}{|M_{gg}|^2} \equiv F_3^0(3_g, 4_g, 5_g)$$

	tree level	one loop
quark-antiquark		
qgar q	$A^0_3(q,g,ar q)$	$A^1_3(q,g,ar{q}), \tilde{A}^1_3(q,g,ar{q}), \hat{A}^1_3(q,g,ar{q})$
$qggar{q}$	$A^0_4(q,g,g,ar{q}),\ ilde{A}^0_4(q,g,g,ar{q})$	
qq'ar q'ar q	$B_4^0(q,q',ar q',ar q)$	
qqar qar q	$C_4^0(q,q,\bar{q},\bar{q})$	
quark-gluon		
qgg	$D_3^0(q,g,g)$	$D^1_3(q,g,g), \hat{D}^1_3(q,g,g)$
qggg	$D_4^0(q,g,g,g)$	
qq'ar q'	$E^0_3(q,q',ar q')$	$E_3^1(q,q',\bar{q}'), \ \tilde{E}_3^1(q,q',\bar{q}'), \ \hat{E}_3^1(q,q',\bar{q}')$
qq'ar q'g	$E^0_4(q,q',ar q',g),\ \tilde E^0_4(q,q',ar q',g)$	
gluon-gluon		
ggg	$F_3^0(g,g,g)$	$F_3^1(g,g,g), \hat{F}_3^1(g,g,g)$
gggg	$F_4^0(g,g,g,g)$	
gqar q	$G^0_3(g,q,ar q)$	$G_3^1(g,q,ar{q}), \tilde{G}_3^1(g,q,ar{q}), \hat{G}_3^1(g,q,ar{q})$
gqar qg	$G^0_4(g,q,\bar{q},g),\tilde{G}^0_4(g,q,\bar{q},g)$	
q ar q q' ar q'	$H^0_4(q,ar q,q',ar q')$	

Numerical implementation

requires partonic emissions to be ordered

- two hard radiators identified uniquely (not a priori the case for qg and gg)
- each unresolved parton can only be singular with its two adjacent partons

need to separate

- multiple antenna configurations in single antenna function
 (e.g. F(3_g, 4_g, 5_g) contains three configurations: (345), (453), (534))
- non-ordered emission (if gluons are photon-like)
- all ordered forms (obtained by partial fractioning) of a given antenna function have
 - the same phase space factorisation
 - different phase space mappings (D. Kosower)

 $e^+e^- \rightarrow 3$ jets at NNLO

First applications of antenna subtraction

NNLO corrections to $1/N^2$ colour factor in $e^+e^- \rightarrow 3$ jets

- constructed 5-parton and 4-parton subtraction terms
- 5-parton channel numerically finite in all single and double unresolved regions
- 4-parton channel free of explicit $1/\epsilon$ poles and numerically finite in all single unresolved regions
- **9** 3-parton channel free of explicit $1/\epsilon$ poles

$$\mathcal{P}oles\left(\mathrm{d}\sigma_{NNLO}^{S} + \mathrm{d}\sigma_{NNLO}^{VS,1} + \mathrm{d}\sigma_{NNLO}^{V,2}\right) = 0$$

- subscription splicit infrared pole terms of $d\sigma_{NNLO}^{V,2}$ can be expressed by integrated antenna functions for all colour factors
 - Other colour factors in progress
 A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG (→ talk of G. Heinrich)

Summary

Main features of antenna subtraction at NNLO

- building blocks of subtraction terms: 3 and 4 parton antenna functions
- ${}$ antenna functions are derived from physical $|{\cal M}|^2$
 - quark-antiquark: $\gamma^* \to q\bar{q} + X$
 - **9** quark-gluon: $\tilde{\chi} \to \tilde{g}g + X$
 - **9** gluon-gluon: $H \rightarrow gg + X$
 - subtraction terms:
 - approximate correctly the full $|\mathcal{M}|^2$ (double real)
 - do not oversubtract
 - can be integrated analytically
- in progress: all colour factors in 3-jet rate
- possible extensions: lepton-hadron, hadron-hadron; same antenna functions, but different phase space