Real radiation at NNLO

Gudrun Heinrich

University of Zurich

Outline

- Motivation
- Isolation of infrared poles
 - general procedure (NLO)
 - double real radiation at NNLO
 - analytical subtraction scheme
 - sector decomposition
- Summary and Outlook

precision measurements led to successful predictions (e.g. top mass) and stringent tests of Standard Model

only possible in combination with "precision calculations" \Rightarrow RADCOR

future International Linear Collider will reach precision at the per mille level

measurement of $e^+e^- \rightarrow 3$ jet observables offers possibility for determination of strong coupling constant α_s with unseen precision

Jet production

 α_s world average:

 $\alpha_s(M_Z) = 0.1179 \pm 0.003$ (stat. and sys.) S. Bethke 04

theory error on determination of α_s from jet observables using NLO calculations:

scale dependence: +0.007, -0.005 hadronisation etc: ± 0.0009

Jet production

 α_s world average:

 $\alpha_s(M_Z) = 0.1179 \pm 0.003$ (stat. and sys.) S. Bethke 04

theory error on determination of α_s from jet observables using NLO calculations:

scale dependence: +0.007, -0.005hadronisation etc: ± 0.0009

 \Rightarrow NNLO necessary to match experimental precision !

Real radiation at NNLO – p.5

Subtraction of Infrared Poles: NLO

virtual:
$$d\sigma^V = P_2/\epsilon^2 + P_1/\epsilon + P_0$$

real: integration of subtraction terms $d\sigma^S$ over singular regions of phase space

$$\Rightarrow \int_{\text{sing}} d\sigma^S = -P_2/\epsilon^2 - P_1/\epsilon + Q_0$$

$$\sigma^{NLO} = \underbrace{\int_{m+1} \left[d\sigma^R - d\sigma^S \right]_{\epsilon=0}}_{\text{numerically}} + \underbrace{\int_m \left[\underbrace{d\sigma^V}_{\text{analytically}} + \underbrace{\int_1 d\sigma^S}_{\text{analytically}} \right]_{\epsilon=0}}_{\text{numerically}}$$

two conceptually different approaches:

manual construction of a subtraction scheme and analytic integration over subtraction terms in $D = 4 - 2\epsilon \text{ dimensions}$

[A. Gehrmann-De Ridder, T. Gehrmann, N. Glover], [Del Duca, Somogyi, Trocsanyi], [Frixione, Grazzini], [Kilgore]

 \rightarrow see talks of T. Gehrmann, V. Del Duca

 sector decomposition: automated isolation of IR poles in parameter space and numerical integration of pole coefficients [GH, Binoth], [Anastasiou, Melnikov, Petriello]

analytical subtraction scheme

[T. Gehrmann, A. Gehrmann-De Ridder, N. Glover]

example: average thrust distribution for N_F^2 colour factor

difficulty in general: singularities are entangled in parameter space (overlapping structure)

usual subtraction procedure:

$$\int_0^1 dx \, dy \, x^{-1-\epsilon} f(x,y) = -\frac{1}{\epsilon} \int_0^1 dy \, f(0,y) + \int_0^1 dx \, dy \, x^{-\epsilon} \, \frac{f(x,y) - f(0,y)}{x}$$

 $f(x,y) = 1/(x+y) \Rightarrow f(0,y) = 1/y \Rightarrow$ subtraction fails

solution: decompose into two sectors x > y and x < y, remap integrations to unit cube

sector decomposition

$$I = \int_{0}^{1} dx \, dy \, x^{-1-\epsilon} \, (x+y)^{-1}$$

= $\int_{0}^{1} dx \, dy \, x^{-1-\epsilon} \, (x+y)^{-1} \left[\underbrace{\Theta(x-y)}_{(1)} + \underbrace{\Theta(y-x)}_{(2)} \right]$
subst. (1) $y = x t_{2}$ (2) $x = y t_{1}$
$$I = \int_{0}^{1} dx \, x^{-1-\epsilon} \int_{0}^{1} dt_{2} \, (1+t_{2})^{-1}$$

 $+ \int_{0}^{1} dy \, y^{-1-\epsilon} \int_{0}^{1} dt_{1} \, t_{1}^{-1-\epsilon} \, (1+t_{1})^{-1}$

 \Rightarrow singularities are disentangled

general algorithm

- map parameter integrals to unit hypercube
- Scan denominators for overlapping singularities automated subroutine: denominator = 0 for $\{x_1 \ldots x_k\}$ → 0 ⇒ sector decomposition in $x_1 \ldots x_k$
- after disentangling of singularities:

subtractions and expansion in ϵ (plus distributions)

$$x^{-1+\kappa\epsilon} = \frac{1}{\kappa\epsilon} \,\delta(x) + \sum_{n=0}^{\infty} \frac{(\kappa\epsilon)^n}{n!} \,\left[\frac{\ln^n(x)}{x}\right]_+$$

• result: Laurent series in ϵ

$$I = \sum_{k=-\text{maxpole}}^{n} \epsilon^k C_k(x_i, m_i^2) + \mathcal{O}(\epsilon^{n+1})$$

poles are isolated \Rightarrow evaluate coefficients C_k numerically

application to $1 \rightarrow 4$ phase space

example: double real radiation part of $e^+e^- \rightarrow 2$ jets at NNLO (1 \rightarrow 4 partons)

$$\int d\Phi_4 = (2\pi)^{4-3D} \int \prod_{i=1}^4 d^D p_i \,\delta^+(p_i^2) \,\delta(Q - \sum_{j=1}^4 p_j)$$

define
$$x_1 = s_{12}/Q^2, \ldots, x_6 = s_{34}/Q^2$$

$$\int d\Phi_4 \sim \int \prod_{j=1}^6 dx_j \,\delta(1 - \sum_{i=1}^6 x_i) \left[\lambda(x_1 x_6, x_2 x_5, x_3 x_4)\right]^{-1/2 - \epsilon} \Theta(\lambda)$$

 $\lambda(x, y, z) = 2(xy + xz + yz) - (x^2 + y^2 + z^2)$

Matrix element

$$|M_4|^2 \sim \frac{\mathcal{P}_1(x_i,\epsilon)}{x_2^2(x_2 + x_4 + x_6)^2} + \frac{\mathcal{P}_2(x_i,\epsilon)}{(x_2 + x_4 + x_6)(x_3 + x_5 + x_6)x_4x_5} + \dots$$

$$(x_2 + x_4 + x_6) = \frac{s_{134}}{Q^2}, (x_3 + x_5 + x_6) = \frac{s_{234}}{Q^2}$$

important: choice of convenient parametrisation when mapping integrations to unit hypercube

(e.g. solve $\lambda = 0$ for variable not occurring in denominator)

minimises number of functions produced by iterated sector decomposition

 $e^+e^- \rightarrow 2$ jets: minimisation not vital as expressions are of moderate size

sector decomposition for processes involving 5 particles at NNLO ($1 \rightarrow 4$ and $2 \rightarrow 3$) has seen many successful applications meanwhile:

• $e^+e^- \rightarrow 2$ jets at NNLO

GH 03; Binoth, GH 04; Anastasiou, Melnikov, Petriello 03,04

NNLO QED corrections to muon decay Anastasiou, Melnikov, Petriello 05

NNLO Higgs production Anastasiou, Melnikov, Petriello 05

here for the first time: application to process involving 6 particles:

 $e^+e^- \rightarrow 3$ jets at NNLO (1 $\rightarrow 5$ process)

application to $1 \rightarrow 5$ phase space

phase space for $\gamma^* \rightarrow 5$ partons:

 $Q = p_1 + \ldots + p_5$, 10 invariants $s_{12}, s_{13}, s_{23}, \ldots, s_{45}$ eliminate one s_{ij} by momentum conservation

in D = 4: remaining 9 invariants not independent: nonlinear constraint from Det(G) = 0 $(G_{ij} = 2 p_i \cdot p_j \text{ Gram matrix})$

sector decomposition:

operates in $D \neq 4$ dimensions to isolate poles in $1/\epsilon$

 \Rightarrow work with 9 independent invariants

$1 \rightarrow 5$ phase space

use dimensionless invariants $x_1 = s_{12}/Q^2, \ldots, x_{10} = s_{45}/Q^2$

$$\int d\Phi_{1\to 5}^{D\neq 4} = C_{\Gamma}^{(5)} \int \prod_{j=1}^{10} dx_j \,\delta(1-\sum_{i=1}^{10} x_i) \,\left[\Delta_5(\vec{x})\right]^{(D-6)/2} \Theta(\Delta_5)$$

$1 \rightarrow 5 \text{ phase space}$

use dimensionless invariants $x_1 = s_{12}/Q^2, \ldots, x_{10} = s_{45}/Q^2$

$$\int d\Phi_{1\to 5}^{D\neq 4} = C_{\Gamma}^{(5)} \int \prod_{j=1}^{10} dx_j \,\delta(1-\sum_{i=1}^{10} x_i) \,\left[\Delta_5(\vec{x})\right]^{(D-6)/2} \Theta(\Delta_5)$$

note:
$$C_{\Gamma}^{(5)} \sim V(D-4) = 2\pi^{-\epsilon}/\Gamma(-\epsilon) = \mathcal{O}(\epsilon)$$

combines with

fake singularity in $[\Delta_5(\vec{x})]^{(D-6)/2} = [\Delta_5(\vec{x})]^{-1-\epsilon}$

 \Rightarrow after combination with $1 \rightarrow 5$ matrix element

up to $1/\epsilon^7$ poles in parameter integrals

$$\Delta_{5} = x_{10}^{2} x_{1} x_{2} x_{3} + x_{9}^{2} x_{1} x_{4} x_{5} + x_{8}^{2} x_{2} x_{4} x_{6} + x_{7}^{2} x_{3} x_{5} x_{6} + x_{6}^{2} x_{1} x_{7} x_{8} + x_{5}^{2} x_{2} x_{7} x_{9} + x_{4}^{2} x_{3} x_{8} x_{9} + x_{3}^{2} x_{4} x_{7} x_{10} + x_{2}^{2} x_{5} x_{8} x_{10} + x_{1}^{2} x_{6} x_{9} x_{10} + x_{10} [x_{2} x_{3} x_{5} x_{7} + x_{1} x_{3} x_{6} x_{7} + x_{2} x_{3} x_{4} x_{8} + x_{1} x_{2} x_{6} x_{8} + x_{1} x_{3} x_{4} x_{9} + x_{1} x_{2} x_{5} x_{9}] + x_{9} [x_{4} x_{5} (x_{3} x_{7} + x_{2} x_{8}) + x_{1} x_{6} (x_{5} x_{7} + x_{4} x_{8})] + x_{6} x_{7} x_{8} (x_{3} x_{4} + x_{2} x_{5})$$

"real" $1/\epsilon^6$ poles come from regions where 3 particles become soft/collinear ("triple unresolved")

- \Rightarrow leads to 2-jet configuration
- \Rightarrow will be rejected by measurement function

example:

$$|\mathcal{M}|^2 \sim \mathcal{P}(s_{ij}, \epsilon) / (s_{1345} \, s_{2345} \, s_{345} \, s_{245} \, s_{34} \, s_{25})$$

 $\{s_{34}, s_{345}, s_{1345}\} \to 0 \Rightarrow 1/\epsilon^6$ pole

measurement function

after ϵ expansion: finite part of $\int d\phi_5 |\mathcal{M}|^2 \sim$

$$\delta(s_{1345})\delta(s_{345})\delta(s_{34})G(s_{ij}) + \delta(s_{34})\left[\frac{\ln(s_{25})}{s_{25}}\right]_{+}F(s_{ij}) + \dots$$

3-jet measurement function will enforce $s_{1345} > 0 \Rightarrow$ first term vanishes after inclusion of measurement function problem:

- general procedure creates enormous number of terms (example graph: $\mathcal{O}(500)$ terms before, $\mathcal{O}(10^4)$ terms after iterated sector decomposition)
- many of them will be discarded later by measurement function
- would like to include measurement function only at very end in Fortran code to maintain flexibility

solution:

make "preselection" already in ϵ expansion (e.g. impose $s_{1345} > 0$) to discard 2-jet configurations

solution:

make "preselection" already in ϵ expansion (e.g. impose $s_{1345} > 0$) to discard 2-jet configurations

Imits number of terms produced by ϵ expansion

solution:

make "preselection" already in ϵ expansion (e.g. impose $s_{1345} > 0$) to discard 2-jet configurations

- Imits number of terms produced by ϵ expansion
- leaves freedom to define actual measurement function (e.g. jet algorithm, shape observables, ...) in Monte Carlo program only

5-jet rate for example graph:

 y^{cut} : miminal separation between jets in terms of invariant mass

join bits and pieces

application to full $e^+e^- \rightarrow q\bar{q}ggg, q\bar{q}Q\bar{Q}g$ matrix elements

choose different parametrisations, optimised for certain denominator structures

join bits and pieces

application to full $e^+e^- \rightarrow q\bar{q}ggg, q\bar{q}Q\bar{Q}g$ matrix elements

- choose different parametrisations, optimised for certain denominator structures
- iterate sector decomposition

join bits and pieces

application to full $e^+e^- \rightarrow q\bar{q}ggg, q\bar{q}Q\bar{Q}g$ matrix elements

- choose different parametrisations, optimised for certain denominator structures
- iterate sector decomposition
- expand in ϵ including "preselection" to avoid $1/\epsilon^6$ poles and oversubtractions \Rightarrow set of finite functions (parameter integrals over unit-hypercube)

application to full $e^+e^- \rightarrow q\bar{q}ggg, q\bar{q}Q\bar{Q}g$ matrix elements

- choose different parametrisations, optimised for certain denominator structures
- iterate sector decomposition
- expand in ϵ including "preselection" to avoid $1/\epsilon^6$ poles and oversubtractions \Rightarrow set of finite functions (parameter integrals over unit-hypercube)
- write functions to Fortran code (Monte Carlo program), specify measurement functions

application to full $e^+e^- \rightarrow q\bar{q}ggg, q\bar{q}Q\bar{Q}g$ matrix elements

- choose different parametrisations, optimised for certain denominator structures
- iterate sector decomposition
- expand in ϵ including "preselection" to avoid $1/\epsilon^6$ poles and oversubtractions \Rightarrow set of finite functions (parameter integrals over unit-hypercube)
- write functions to Fortran code (Monte Carlo program), specify measurement functions

all steps are fully automated

difficulty:

difficulty:

 find trade-off between automated processing and limitation of the number of terms (avoid unnecessary decompositions as far as possible)

difficulty:

- find trade-off between automated processing and limitation of the number of terms (avoid unnecessary decompositions as far as possible)
- optimize handling of large files

drawbacks of sector decomposition:

drawbacks of sector decomposition:

produces very large expressions

drawbacks of sector decomposition:

produces very large expressions

advantages subtraction scheme:

drawbacks of sector decomposition:

produces very large expressions

advantages subtraction scheme:

moderate number of subtraction terms

drawbacks of sector decomposition:

produces very large expressions

advantages subtraction scheme:

- moderate number of subtraction terms
- maximal analytical control over pole parts

drawbacks of sector decomposition:

produces very large expressions

advantages subtraction scheme:

- moderate number of subtraction terms
- maximal analytical control over pole parts
- insights into infrared structure of QCD

drawbacks of subtraction scheme:

drawbacks of subtraction scheme:

different for each colour structure

drawbacks of subtraction scheme:

- different for each colour structure
- analytical integration of subtraction terms may become impossible for processes involving several mass scales

drawbacks of subtraction scheme:

- different for each colour structure
- analytical integration of subtraction terms may become impossible for processes involving several mass scales

advantages of sector decomposition:

drawbacks of subtraction scheme:

- different for each colour structure
- analytical integration of subtraction terms may become impossible for processes involving several mass scales

advantages of sector decomposition:

subtraction terms are integrated numerically
 \Rightarrow no need to have simple subtraction terms

drawbacks of subtraction scheme:

- different for each colour structure
- analytical integration of subtraction terms may become impossible for processes involving several mass scales

advantages of sector decomposition:

- subtraction terms are integrated numerically \Rightarrow no need to have simple subtraction terms
- procedure of isolating singularities is simple algorithm always the same for
 - 1. all colour structures of a given process
 - 2. different processes

Outlook

universality of sector decomposition algorithm offers broad range of applications

universality of sector decomposition algorithm offers broad range of applications

the two methods are complementary

universality of sector decomposition algorithm offers broad range of applications

the two methods are complementary

Monte Carlo programs for $e^+e^- \rightarrow 3$ jets at NNLO with both methods are under construction