# Radiative Correction of Eighth- and Tenth-Orders to Lepton g-2 

presented at
7th International Symposium on Radiative Corrections
APPLICATION OF QUANTUM FIELD THEORY TO PHENOMENOLOGY

Shonan Village, Japan, October 2-7, 2005

Toichiro Kinoshita
Laboratory of Elementary-Particle Physics
Cornell University, Ithaca, New York

1. Introduction

- Deviation of electron $g$ value from 2 was first discovered in atomic spectrum.

$$
\text { P. Kusch and H. M. Foley, PR 72, } 1256 \text { (1947) }
$$

- Schwinger showed that it can be explained as QED effect.
J. Schwinger, PR 73, 416L (1948)
- Together with the Lamb shift, it provided convincing experimental evidence that (until then discredited) QED is the correct theory of electromagnetic interaction, provided that it is renormalized.
- As precision of measurement of g-2 improves by 7 orders of magnitude from $5 \times 10^{-2}$ to $4 \times 10^{-9}$, theory of radiative correction has been pushed to order $\alpha^{4}$ to match measurement.
- Their comparison provides the most stringent test of the validity of QED.


## 2. Electron $g-2$ : Measurement.

- In 1987 the value of electron g-2 was improved over previous best value by three orders of magnitude in a Penning trap experiment by Dehmelt et al. at U. of Washington.


Fia. 1. Electron in Peaning trap, the Geoeium -tome. "n te nimple mooo-cioctron oncillator mode ahown, the electron moves only parailel to the magnetic field a and alogs the symmetry wis of the ellectrode atructure. Each time it gets too close to one of the negatively charged cap
clectrodes, it is tursed around ind a rf oveillitory motion reulta.

Figure 1: Penning trap with hyperboloid electrodes.

- Best results reported from Seattle were:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{e}^{-}}=1159652188.4(4.3) \times 10^{-12} \\
& \mathrm{a}_{\mathrm{e}^{+}}=1159652187.9(4.3) \times 10^{-12}
\end{aligned}
$$

Van Dyck et al., PRL 59, 26 (1987)

- Uncertainty of this measurement was dominated by cavity shift due to interaction of electron with hyperboloid cavity which has complicated resonance structure.
- Several ways to reduce this error examined:
a) Use cavity with smaller $Q$.

Preliminary result:

$$
a_{e^{-}}=1159652185.5(4.0) \times 10^{-12}
$$

Van Dyck et al., 1991, unpublished.
b) Study the cavity shift by many ( $\sim 1000$ )-electron cluster which magnifies the cavity shift.

$$
\text { Mittleman et al. PRL 75, } 2839 \text { (1995) }
$$

c) Use cylindrical cavity, whose property is known analytically.

Brown, Gabrielse, PRL 55, 44 (1985)

- Gabrielse's new measurement of $a_{e}$ is based on $\mathbf{c}$ ).
- It is in an advanced stage.
(See Figures, next pages.)


Figure 2: Cyclotron Resonance Line (Gabrielse).

frequency offset (ppb)


Figure 3: Anomaly Resonance Line (Gabrielse).

- Recently a preliminary value was reported:

$$
\mathrm{a}_{\mathrm{e}^{-}}=1159652180.86(0.57) \times 10^{-12} \quad(0.49 \mathrm{ppb})
$$

B. Odom, PhD thesis, Harvard University, 2005

- 7.5 times more precise than the Seattle result.
- Gabrielse thinks that this was premature:

Error analysis is not yet finished.

- Final published value may be more conservative.

3. Electron $g-2$ : Current Status of Theory.

- QED contribution

$$
\mathbf{a}_{\mathbf{e}}(\mathbf{Q E D})=\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{2}}\left(\mathbf{m}_{\mathrm{e}} / \mathbf{m}_{\mu}\right)+\mathbf{A}_{\mathbf{2}}\left(\mathbf{m}_{\mathbf{e}} / \mathbf{m}_{\tau}\right)+\mathbf{A}_{\mathbf{3}}\left(\mathbf{m}_{\mathrm{e}} / \mathbf{m}_{\mu}, \mathbf{m}_{\mathbf{e}} / \mathbf{m}_{\tau}\right)
$$

$$
\mathbf{A}_{\mathbf{i}}=\mathbf{A}_{\mathbf{i}}^{(2)}\left(\frac{\alpha}{\pi}\right)+\mathbf{A}_{\mathbf{i}}^{(4)}\left(\frac{\alpha}{\pi}\right)^{2}+\mathbf{A}_{\mathbf{i}}^{(6)}\left(\frac{\alpha}{\pi}\right)^{3}+\ldots, \mathbf{i}=1,2,3
$$

$$
\mathrm{A}_{1}^{(2)}=0.5 \quad 1 \text { diagram (analytic) }
$$

$$
\mathrm{A}_{1}^{(4)}=-0.328478965 \ldots \quad 7 \text { diagrams } \quad \text { (analytic) }
$$

$$
\mathrm{A}_{1}^{(6)}=1.181241456 \ldots \quad 72 \text { diagrams (numerical, analytic) }
$$

Kinoshita, PRL 75, 4728 (1995)
Laporta, Remiddi, PLB 379, 283 (1996)

$$
\mathrm{A}_{1}^{(8)}=-1.7283(35) \quad 891 \text { diagrams } \quad \text { (numerical) }
$$

Kinoshita, Nio, arXiv:hep-ph/0507249 v1 21 Jul 2005.

$$
\mathrm{A}_{1}^{(10)}=0(3.8) \quad 12672 \text { diagrams } \quad \text { (guess by Mohr, Taylor) }
$$

- $A_{1}^{(8)}$ is our new result.

Its error has been reduced by 10 compared with old one.

- Thus far $A_{1}^{(8)}$ has been evaluated by one method only.
- However, there are extensive cross-checking among diagrams of 8th-order and also with 6th-, 4th-, 2nd-order diagrams.
- $\mathrm{A}_{2}$ terms are small :

$$
\mathbf{A}_{2}^{(4)}\left(\mathbf{m}_{\mathrm{e}} / \mathrm{m}_{\mu}\right)(\alpha / \pi)^{2}=2.804 \times 10^{-12}
$$

$$
\mathbf{A}_{2}^{(4)}\left(\mathbf{m}_{\mathrm{e}} / \mathbf{m}_{\tau}\right)(\alpha / \pi)^{2}=0.010 \times 10^{-12}
$$

$$
\mathrm{A}_{2}^{(6)}\left(\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mu}\right)(\alpha / \pi)^{3}=-0.924 \times 10^{-13}
$$

$$
\mathrm{A}_{2}^{(6)}\left(\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\tau}\right)(\alpha / \pi)^{3}=-0.825 \times \mathbf{1 0}^{-15}
$$

$\bullet$ The $\mathrm{A}_{3}$ term is even smaller $\left(\sim 2.4 \times 10^{-21}\right)$.

- Non-QED contribution (Standard Model).
a) $\mathrm{a}_{\mathrm{e}}$ (hadron) $=1.645(42) \times 10^{-12}$

Jegerlehner, priv. com. 1996
Krause, priv. com. 1996
b) $\quad \mathrm{a}_{\mathrm{e}}($ weak $)=0.030 \times 10^{-12}$
estimated by scaling down from $a_{\mu}$ (weak).
Czarnecki et al., PRL 76, 3267 (1996)

- To compare theory with measured value of $a_{e}$ one needs $\alpha$ obtained by some non-QED measurements.
- Best $\alpha$ available at present is one obtained by atom interferometry combined with cesium $D_{1}$ line measurement:

$$
\alpha^{-1}\left(\mathrm{~h} / M_{C_{s}}\right)=137.0360003(10)
$$

A. Wicht et al. in Proc. of 6th Symp. on Freq. Standards and Metrology (World Sci., 2002), pp.193-212

- This leads to
$\mathrm{a}_{\mathrm{e}}\left(\mathrm{h} / \mathrm{M}_{\mathrm{Cs}}\right)=1159652174.19(0.11)(0.26)(8.48) \times 10^{-12}$ $(8 t h)(10 t h)\left(\alpha\left(h / M_{C s}\right)\right)$
$\mathrm{a}_{\mathrm{e}}(\exp )-\mathrm{a}_{\mathrm{e}}\left(\mathrm{h} / \mathrm{M}_{\mathrm{Cs}}\right)=11.8(9.5) \times 10^{-12}$,
assuming $\mathrm{A}_{1}^{(10)}=0.0(3.8)$.
- Error 8.48 of $\alpha\left(h / M_{C s}\right)$ is still large but comparable with error of Seattle experiment.
- Very recent developments:
(1) Relative uncertainty of Wicht et al. has been reduced to 4 ppb .
(2) Measurement of recoil velocity of ${ }^{87} R_{b}$ atom based on Bloch oscillations in a vertically accelerated optical lattice by French group gives

$$
\alpha^{-1}\left(\mathrm{~h} / M_{R_{b}}\right)=137.03599878(91) \quad(6.7 \mathrm{ppb})
$$

P. Claré et al. submitted to PRL.

- Statistical uncertainty: 4.4 ppb , Systematic uncertainty: 5.0 ppb .
- These uncertainties will be reduced further.

4. Muon $g-2$ : Measurement and Interpretation.

- First precision measurement (7ppm) at CERN.
- After years of hard work muon g-2 measurement at BNL has come close to the design goal ( 0.35 ppm ).
- The current world-average is

$$
\mathbf{a}_{\mu}(\exp )=11659208(6) \times 10^{-10} \quad(0.5 \mathrm{ppm})
$$

Bennett et al., PRL 92, 161802 (2004)

- Few years ago apparent disagreement with Standard Model caused a lot of excitement as indicator of possible new physics.
- By now it is clear that prediction of SM must be known more precisely in order to explore physics beyond SM.
- SM prediction consists of QED, electroweak, and hadronic parts.
- Largest uncertainty comes from hadronic $v-p$ term.
- It is calculated from three types of measurements:
(1) $e^{+} e^{-} \rightarrow$ hadrons,
(2) $\tau^{ \pm} \rightarrow \nu+\pi^{ \pm}+\pi^{0} \quad$ (with isospin invariance),
(3) $e^{+} e^{-} \rightarrow \gamma+$ hadrons (radiative return).
- Process (3), the latest arrival, seems to agree with (1).
- Process (1) has been analyzed by many groups over years. Some recent results are

$$
\begin{aligned}
& \mathrm{a}_{\mu}(\text { had.vp })=6934(53)_{\exp }(35)_{\text {rad }} \times 10^{-11} \\
& \text { Höcker, hep-ph/0410081 (2004) } \\
& \mathrm{a}_{\mu}(\text { had.vp })=6924(59)_{\exp }(24)_{\text {rad }} \times 10^{-11} \\
& \text { Hagiwara et al., PRD 69, } 093003 \text { (2004) } \\
& \mathrm{a}_{\mu}(\text { had.vp })=6944(48)_{\exp }(10)_{\text {rad }} \times 10^{-11} \\
& \text { Trocóniz,Ynduráin, hep-ph/0402285 (2004) }
\end{aligned}
$$

- Recent estimate of hadronic $l-l$ contribution:

$$
\mathbf{a}_{\mu}(\text { had.ll })=136(25) \times 10^{-11}
$$

Melnikov, Vainshtein, arXiv:hep-ph/0312226

- NLO hadronic contribution:

$$
\begin{array}{r}
\mathbf{a}_{\mu}(\text { had.NLO })=-101(6) \times 10^{-11} \\
\text { Hagiwara et al., PRD 69, } 093003(2004)
\end{array}
$$

- Electroweak contribution to 2-loop order:

$$
\begin{aligned}
& \mathbf{a}_{\mu}(\text { weak })=152(1) \times 10^{-11} \quad \text { Knecht et al., JHEP 11, } 003(2002) \\
& \mathbf{a}_{\mu}(\text { weak })=154(1)(2) \times 10^{-11} \quad \text { Czarnecki et al., PRD 67, } 073006(2003)
\end{aligned}
$$

## 5. Muon $g-2$ : Current Status of QED Correction.

- $a_{\mu}(\mathrm{QED})$ can be written in the general form:

$$
\begin{gathered}
\mathbf{a}_{\mu}(\mathbf{Q E D})=\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{2}}\left(\mathbf{m}_{\mu} / \mathbf{m}_{\mathbf{e}}\right)+\mathbf{A}_{\mathbf{2}}\left(\mathbf{m}_{\mu} / \mathbf{m}_{\tau}\right)+\mathbf{A}_{\mathbf{3}}\left(\mathbf{m}_{\mu} / \mathbf{m}_{\mathbf{e}}, \mathbf{m}_{\mu} / \mathbf{m}_{\tau}\right) \\
\mathbf{A}_{\mathbf{i}}=\mathbf{A}_{\mathbf{i}}^{(\mathbf{2})}\left(\frac{\alpha}{\pi}\right)+\mathbf{A}_{\mathbf{i}}^{(4)}\left(\frac{\alpha}{\pi}\right)^{\mathbf{2}}+\mathbf{A}_{\mathbf{i}}^{(\mathbf{6})}\left(\frac{\alpha}{\pi}\right)^{\mathbf{3}}+\ldots, \mathbf{i}=\mathbf{1}, \mathbf{2}, \mathbf{3}
\end{gathered}
$$

- $A_{1}$ is common to $a_{e}$ and $a_{\mu} \cdot \mathbf{A}_{2}^{(4)}, A_{2}^{(6)}, A_{3}^{(6)}$ evaluated by numerical int., analytic int., asymptotic expansion in $\mathrm{m}_{\mu} / \mathrm{m}_{\mathrm{e}}$, or power series expansion in $\mathbf{m}_{\mu} / \mathbf{m}_{\tau}$. Errors are due to $\alpha, \mathbf{m}_{\mu}$ and $\mathbf{m}_{\tau}$ only.

$$
\begin{aligned}
& \mathbf{A}_{2}^{(4)}\left(\mathrm{m}_{\mu} / \mathrm{m}_{\mathrm{e}}\right)=1.094258311 \mathbf{1}(84) \\
& \mathrm{A}_{2}^{(4)}\left(\mathrm{m}_{\mu} / \mathrm{m}_{\tau}\right)=7.8064(\mathbf{2 5}) \times 10^{-5} \\
& \mathbf{A}_{2}^{(6)}\left(\mathrm{m}_{\mu} / \mathrm{m}_{\mathrm{e}}\right)=\mathbf{2 2 . 8 6 8 3 8 0 0 2 ( 2 0 )} \\
& \mathbf{A}_{2}^{(6)}\left(\mathrm{m}_{\mu} / \mathrm{m}_{\tau}\right)=\mathbf{3 6 . 0 5 1}(\mathbf{2 1}) \times 10^{-5} \\
& \mathbf{A}_{3}^{(6)}\left(\mathrm{m}_{\mu} / \mathrm{m}_{\mathrm{e}}, \mathrm{~m}_{\mu} / \mathrm{m}_{\tau}\right)=0.527 \mathbf{6 6}(\mathbf{1 7}) \times 10^{-3}
\end{aligned}
$$

- $A_{2}^{(8)}\left(m_{\mu} / m_{e}\right)$ and $A_{2}^{(8)}\left(m_{\mu} / m_{e}, m_{\mu} / m_{\tau}\right)$ have been evaluated thus far by numerical method only.
- Evaluated by Monte-Carlo integration code VEGAS.

Lepage, J. Comput. Phys. 27, 192 (1978).

- Latest results are

$$
\begin{aligned}
& \mathbf{A}_{2}^{(8)}\left(\mathbf{m}_{\mu} / \mathbf{m}_{\mathbf{e}}\right)=132.6823(72) \\
& \mathbf{A}_{3}^{(8)}\left(\mathbf{m}_{\mu} / \mathrm{m}_{\mathrm{e}}, \mathrm{~m}_{\mu} / \mathbf{m}_{\tau}\right)=0.0376(1)
\end{aligned}
$$

Kinoshita, Nio, PRD 70, 113001(2004)

- Improved by more than an order of magnitude over previous results.
- As is discussed later we also obtained an improved value of $A_{2}^{(10)}$ :

$$
\mathrm{A}_{2}^{(10)}\left(\mathrm{m}_{\mu} / \mathrm{m}_{\mathrm{e}}\right)=\mathbf{6 5 2}(20),
$$

- Total QED contribution to $a_{\mu}$, including $\alpha^{5}$ term, is

$$
\begin{array}{r}
\mathbf{a}_{\mu}(\mathrm{QED})=116584717.72\left(\mathbf{0 . 0 2 )}(\mathbf{0 . 1 4})(0.85) \times 10^{-11}\right. \\
(8 \mathrm{th})(10 \mathrm{th})\left(\alpha\left(h / M_{C s}\right)\right)
\end{array}
$$

using

$$
\alpha^{-1}\left(\mathrm{~h} / M_{C_{s}}\right)=137.0360003(10)
$$

- Including hadronic $v-p$ and $l-l$ terms and electroweak term, the SM value of $a_{\mu}$ is

$$
\begin{aligned}
& \mathbf{a}_{\mu}(\mathrm{SM})=116591870.7(76.2) \times 1^{-11} \\
& \mathbf{a}_{\mu}(\exp )-\mathbf{a}_{\mu}(\mathrm{SM})=209(97) \times 10^{-11}
\end{aligned}
$$

where uncertainty in "theory" is mostly due to hadronic v-p terms.

Summary: Relative contribution of various terms.

| $\alpha$ term | 994623 ppm | known exactly |
| :--- | ---: | :---: |
| $\alpha^{2}$ term | 5064 ppm | known exactly |
| $\alpha^{3}$ term | 246 ppm | known exactly |
| $a_{\mu}(h a d)$ | $\sim 60 \mathrm{ppm}$ | $\sim 0.6 \mathrm{ppm}$ |
| $\alpha^{4}$ term | 3.9 ppm | 0.0002 ppm |
| $a_{\mu}(e-w)$ | 1.3 ppm | $\sim 0.02 \mathrm{ppm}$ |
| $\alpha^{5}$ term | 0.044 ppm | 0.0014 ppm |

expt. uncertainty
0.5 ppm
6. Tenth-order term: Why needed ?

- Very important byproduct of study of $a_{e}$ is that it is the best source of $\alpha$.
- If we use Odom's report we find

$$
\begin{gathered}
\alpha^{-1}\left(a_{e}\right)=137.035999708(12)(31)(68) \quad(0.55 \mathbf{p p b}) \\
\left(\alpha^{4}\right)\left(\alpha^{5}\right) \text { (expt) }
\end{gathered}
$$

- This is almost an order of magnitude better than any other measurements of $\alpha$.
- Uncertainty of this measurement is only factor 2 larger than that of theory, which is mostly from the $\alpha^{5}$ term, since $\alpha^{4}$ is known with small error.
- Thus, when measurement improves further, reduction of uncertainty of $\alpha^{5}$ term will become necessary in order to obtain a better $\alpha\left(a_{e}\right)$.
- For muon, old estimate of $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$ was 930 (170), which contributes only 0.054 ppm to $a_{\mu}$, well within current experimental uncertainty.
- Thus improving $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$ is not urgent.
- But it will become important source of error in next generation of $a_{\mu}$ measurement.
- This is why we tried to obtain a better estimate of $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$.
- The number of diagrams contributing to $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$ is


## 9080!

- Fortunately, we found out that it is not too difficult to improve $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$ substantially.

Kinoshita, Nio, in preparation.

- For the electron $A_{1}^{(10)}$ (12672 Feynman diagrams) is much harder to evaluate, but we developed an algorithm that makes it feasible.

Aoyama, Hayakawa, Kinoshita, Nio, in progress

- This will be discussed by the next speaker.
- Anyway the first step is to classify all tenth-order diagrams into gauge-invariant sets.
- There are 32 g-i sets within 6 supersets.


Figure 4: Some diagrams of Set I.
Set I is built from a second-order vertex. 208 diagrams contribute to $A_{1}^{(10)} .498$ diagrams contribute to $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$.


Figure 5: Diagrams of Set II.
Set II is built from fourth-order proper vertices. 600 diagrams contribute to $A_{1}^{(10)} .1176$ diagrams ontribute to $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$.


Figure 6: Diagrams of Set III.
Set III is built from sixth-order proper vertices. 1140 diagrams contribute to $A_{1}^{(10)}$. 1740 diagrams contribute to $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$.


Figure 7: Diagrams of Set IV.
Set IV is built from eighth-order proper vertices. 2072 diagrams contribute to both $A_{1}^{(10)}$ and $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$.


Figure 8: Diagrams of Set V.
Set V consists of 10th-order proper vertices with no closed lepton loop. 6354 Feynman diagrams. They contribute only to $A_{1}^{(10)}$.


Figure 9: Diagrams of Set VI.
Set VI consists of diagrams containing various l-l-scattering subdgrams. 2298 contribute to $A_{1}^{(10)}$. 3594 contribute to $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$.
7. $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$ of muon g-2

- Fortunately, for $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$, it is not difficult to see which $g-i$ sets give large contribution.
- They are the sets containing light-by-light scattering subdiagram and/or vacuum-polarization subdiagram, both of which are sources of $\ln \left(m_{\mu} / m_{e}\right)$.

Kinoshita et al., PRD 41, 593 (1990) Karshenboim, Yad. Phys. 56, 252 (1993)

- Largest contribution comes from Set VI(a) [252 diagrams].
- Next largest comes from Set VI(b) [162 diagrams].
- We have evaluated them precisely:

$$
\begin{aligned}
& \mathrm{A}_{2}[\mathrm{VI}(\mathbf{a})]=629.1407(118) \quad(\text { it was } 570(140))^{*} \\
& \mathrm{~A}_{2}[\mathrm{VI}(\mathbf{b})]=181.1285(51) \quad(\text { it was } 176(35))^{*}
\end{aligned}
$$

[^0]- Largest remaining contribution is likely to come from VI(k)
[120 diagrams] whose leading log term was studied previously :

$$
\begin{aligned}
\mathbf{A}_{2}[\mathrm{VI}(\mathbf{k})] \simeq & \mathrm{C}_{\mathrm{n}} \pi^{4} \log \left(\mathbf{m}_{\mu} / \mathbf{m}_{\mathrm{e}}\right)+\ldots \\
& \\
\mathrm{C}_{\mathrm{n}}= & 0.438 \ldots
\end{aligned} \quad \text { Elkhovskii, Yad. Phys. 49, } 1059 \text { (1989) }
$$

Milstein,Elkhovskii, Phys. Lett. 233B, 11 (1989)

- This led to the estimate

$$
\mathrm{A}_{2}[\mathrm{VI}(\mathrm{k})]=185(85)
$$

Karshenboim, Yad. Phys. 56, 252 (1993)

- The huge $\pi^{4}$ factor is due to the fact that $\log \left(m_{e}\right)$ comes from the integration domain where all exchanged photons have $|k| \ll m_{e}$.
- In this domain, electron moves non-relativistically in the Coulomb potential of the muon, each Coulomb photon contributing a factor $i \pi$ when its momentum is integrated out.
- This estimate will be too crude since $m_{\mu} / m_{e} \simeq 206$ is far from asymptotic. It may have to be reduced substantially, as was the case with sixth-order light-by-light-scattering diagram.
- To answer this question it is best to evaluate them explicitly.
- It turned out that this is not difficult.
- Our first step is to reduce the number of integrals to 12 using

$$
\boldsymbol{\Lambda}^{\nu}(\mathbf{p}, \mathbf{q}) \simeq-\mathbf{q}_{\mu}\left[\frac{\partial \boldsymbol{\Lambda}_{\mu}(\mathbf{p}, \mathbf{q})}{\partial \mathbf{q}_{\nu}}\right]_{\mathbf{q}=\mathbf{0}}-\frac{\partial \boldsymbol{\Sigma}(\mathbf{p})}{\partial \mathbf{p}_{\nu}}
$$

and reduce it further to 9 using time-reversal symmetry.

- Starting from RHS of this identity, FORM generates more than 90,000 terms occupying about 30,000 lines of FORTRAN code.
- Not too bad: It is huge
but only 30 times larger than eighth-order integrals.
- Numerical integration (over 13-dim. Feynman parameter space) is carried out by VEGAS.
- Our result is

$$
\mathrm{A}_{2}[\mathrm{VI}(\mathrm{k})]=86.692(91) .^{*}
$$

- Clearly previous value was overestimate by $\sim 100$.

[^1]- Another possibly large term is VI(j) [162 vertex diagrams].
- Karshenboim's guess:

$$
\mathbf{A}_{2}[\mathrm{VI}(\mathbf{j})]=0 \pm 40
$$

- We decided to evaluate contribution of these diagrams explicitly.
- With the help of W-T transformation and time-reversal invariance they can be represented by 4 independent integrals.
- FORM generated about 42,000 terms occupying about 18,000 lines of FORTRAN code.
- Our result is

$$
\mathrm{A}_{2}[\mathrm{VI}(\mathrm{j})]=-25.5024(24)^{*}
$$

[^2]Other sets computed (not yet fully double-checked) are:

$$
\begin{aligned}
& \mathrm{A}_{2}[\mathbf{I}(\mathbf{a})]=22.55317(25)^{*} \\
& \mathbf{A}_{\mathbf{2}}[\mathbf{I}(\mathbf{b})]=30.66754(33)^{*} \\
& \mathrm{~A}_{2}[\mathbf{I}(\mathrm{c})]=5.14138(15)^{*} \\
& \mathrm{~A}_{2}[\mathbf{I}(\mathrm{~d})]=8.89207 \text { (102) } \\
& \mathrm{A}_{2}[\mathrm{I}(\mathrm{e})]=-1.21920(71) \\
& \mathrm{A}_{2}[\mathrm{I}(\mathbf{f})]=3.68510(13) \\
& \mathrm{A}_{2}[\mathrm{II}(\mathrm{a})]=-70.4717(38)^{*} \\
& \mathrm{~A}_{2}[\mathrm{II}(\mathrm{~b})]=-34.7717(26)^{*} \\
& \mathrm{~A}_{\mathbf{2}}[\mathrm{II}(\mathrm{f})]=-77.5224(414) \\
& \mathrm{A}_{2}[\mathrm{VI}(\mathrm{c})]=-36.5763 \text { (1141) } \\
& \mathrm{A}_{2}[\mathrm{VI}(\mathrm{e})]=-4.3215(1341) \\
& \mathrm{A}_{2}[\mathrm{VI}(\mathrm{f})]=-38.1502 \text { (1545) } \\
& \mathrm{A}_{2}[\mathrm{VI}(\mathrm{i})]=-27.3373 \text { (1147) }
\end{aligned}
$$

Parts of data with * contain analytic results.
Laporta, PLB 328, 522 (1994)

- Thus far we have evaluated 2958 Feynman diagrams of $A_{2}^{(10)}\left(m_{\mu} / m_{e}\right)$.
- Remaining 6122 diagrams are not likely to give large contribution.
- Our provisional estimate for the 10 th-order term is

$$
\mathrm{A}_{2}^{(10)}\left(\mathrm{m}_{\mu} / \mathrm{m}_{\mathrm{e}}\right)=652(20)^{*},
$$

which is smaller by about 280 than the old crude estimate

$$
\mathbf{A}_{2}^{(10)}\left(\mathbf{m}_{\mu} / \mathrm{m}_{\mathrm{e}}\right)=930(170) .
$$

- To improve it further we have to evaluate all remaining Feynman diagrams.
- It is a matter of time to finish it.
- It is put on hold temporarily because our attention is now focused on the electron g-2.

[^3]8. $A_{1}^{(10)}$ term of electron g-2

- Electron g-2 is much harder to evaluate.
- Besides its huge size, none of 12672 diagrams is dominant so that every term must be evaluated accurately.
- Very large and difficult diagrams are mostly in Set V, set of 6354 Feynman diagrams without closed lepton loop.
- This number can be reduced to 706 by W-T transform.
- Time reversal invariance cuts it down further to 389 .




















 ml 几m N





## Figure 10: Overview of all diagrams contributing to Set V.

- Both the number of diagrams and size of their integrals are an order of magnitude larger than the $\alpha^{4}$ case.
- Thus job will be two to three orders of magnitude more difficult.
- While the method for $\alpha^{4}$ applies to $\alpha^{5}$ equally well, its execution for $\alpha^{4}$ was rather pedestrian.
- It would take more than 100 years if $\alpha^{5}$ were handled at the same pace as the $\alpha^{4}$ case.
- Obviously, to finish $\alpha^{5}$ case within reasonal time, we must automate the computation as much as possible.
- This is the subject of next talk by Aoyama.
- As a prelude to his talk let me outline how previous approach was formulated.
(I) Identify diagrams contributing to g-2 and their UV- and IR-divergent subdiagrams.
(II) Convert momentum integral obtained by FeynmanDyson rule to integral, whose integrand is function of Feynman parameters $z_{i}$ and functions $A_{i}, B_{i j}$, $i, j=1, \ldots, N$.
(III) Express $A_{i}$ and $B_{i j}$ as explicit functions of $z_{i}$.
(IV) Build counter terms of UV- and IR-divergences.
- Step II is the most difficult one and was carried out analytically by FORM for $\alpha^{3}$ and $\alpha^{4}$.
- Part of Step IV was automated, too.
- In the $\alpha^{3}$ and $\alpha^{4}$ cases other steps were not difficult and carried out manually.
- For the $\alpha^{5}$ case all these steps are so huge that it is close to impossible without full automation.
- The goal of our project is to make all steps, including renormalization, controled entirely by input information which is one-line computer representation of Feynman diagram.
- We have been able to achieve such an automation by a code which faithfully simulates analysis of forest of diagrams by Zimmermann.
- Thus far we generated FORTRAN codes for all 2232 diagrams which contain only vertex subdiagrams.
- Numerical evaluation of these integrals gives rough idea how large and difficult they actually are.
- Typical integrand has about quarter million terms occupying about 80,000 line of FORTRAN code.
- This is about 3 times larger than Set VI(k) diagrams, which is still manageable.
- Integration by VEGAS had no problem thus far.
- Complete automation, including diagrams containing self-energy subdiagrams, will be achieved shortly.
- Although this project is far from finished, we might say that we have come a long way to realize physicists' pipe dream since Feynman diagram was invented more than half century ago.


[^0]:    * Still preliminary. Please don't quote until posted on the web.

[^1]:    * Still preliminary. Please don't quote until posted on the web.

[^2]:    * Still preliminary. Please don't quote until posted on the web.

[^3]:    * Still preliminary. Please don't quote until posted on the web.

