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1. Introduction

• Deviation of electron g value from 2 was first discovered
in atomic spectrum.

P. Kusch and H. M. Foley, PR 72, 1256 (1947)

• Schwinger showed that it can be explained as QED effect.

J. Schwinger, PR 73, 416L (1948)

• Together with the Lamb shift, it provided convincing
experimental evidence that (until then discredited) QED
is the correct theory of electromagnetic interaction,
provided that it is renormalized.

• As precision of measurement of g-2 improves by 7 orders
of magnitude from 5 × 10−2 to 4 × 10−9,
theory of radiative correction has been pushed to order
α4 to match measurement.

• Their comparison provides the most stringent test of
the validity of QED.
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2. Electron g − 2: Measurement.

• In 1987 the value of electron g-2 was improved over previous
best value by three orders of magnitude in a Penning trap
experiment by Dehmelt et al. at U. of Washington.

Figure 1: Penning trap with hyperboloid electrodes.
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• Best results reported from Seattle were:

ae− = 1 159 652 188.4 (4.3)× 10−12

ae+ = 1 159 652 187.9 (4.3) × 10−12

Van Dyck et al., PRL 59, 26 (1987)

• Uncertainty of this measurement was dominated
by cavity shift due to interaction of electron with
hyperboloid cavity which has complicated
resonance structure.
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• Several ways to reduce this error examined:

a) Use cavity with smaller Q.

Preliminary result:

ae− = 1 159 652 185.5 (4.0) × 10−12

Van Dyck et al., 1991, unpublished.

b) Study the cavity shift by many (∼ 1000)-electron cluster
which magnifies the cavity shift.

Mittleman et al. PRL 75, 2839 (1995)

c) Use cylindrical cavity, whose property is known analytically.
Brown, Gabrielse, PRL 55, 44 (1985)

• Gabrielse’s new measurement of ae is based on c).

• It is in an advanced stage.

(See Figures, next pages.)
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Figure 2: Cyclotron Resonance Line (Gabrielse).
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Figure 3: Anomaly Resonance Line (Gabrielse).

7



• Recently a preliminary value was reported:

ae− = 1 159 652 180.86 (0.57)× 10−12 (0.49 ppb)

B. Odom, PhD thesis, Harvard University, 2005

• 7.5 times more precise than the Seattle result.

• Gabrielse thinks that this was premature:
Error analysis is not yet finished.

• Final published value may be more conservative.
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3. Electron g − 2: Current Status of Theory.

• QED contribution

ae(QED) = A1 + A2(me/mµ) + A2(me/mτ ) + A3(me/mµ,me/mτ )

Ai = A
(2)
i

(

α
π

)

+ A
(4)
i

(

α
π

)2
+ A

(6)
i

(

α
π

)3
+ . . . , i = 1,2,3

A
(2)
1 = 0.5 1 diagram (analytic)

A
(4)
1 = −0.328 478 965 . . . 7 diagrams (analytic)

A
(6)
1 = 1.181 241 456 . . . 72 diagrams (numerical, analytic)

Kinoshita, PRL 75, 4728 (1995)

Laporta, Remiddi, PLB 379, 283 (1996)

A
(8)
1 = −1.728 3 (35) 891 diagrams (numerical)

Kinoshita, Nio, arXiv:hep-ph/0507249 v1 21 Jul 2005.

A
(10)
1 = 0 (3.8) 12672 diagrams (guess by Mohr,Taylor)

• A
(8)
1 is our new result.

Its error has been reduced by 10 compared with old one.

• Thus far A
(8)
1 has been evaluated by one method only.

• However, there are extensive cross-checking among diagrams of
8th-order and also with 6th-, 4th-, 2nd-order diagrams.
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•A2 terms are small :

A
(4)
2 (me/mµ)(α/π)2 = 2.804× 10−12

A
(4)
2 (me/mτ )(α/π)2 = 0.010× 10−12

A
(6)
2 (me/mµ)(α/π)3 = −0.924× 10−13

A
(6)
2 (me/mτ )(α/π)3 = −0.825× 10−15

•The A3 term is even smaller (∼ 2.4× 10−21).

• Non-QED contribution (Standard Model).

a) ae(hadron) = 1.645 (42) × 10−12

Jegerlehner, priv. com. 1996

Krause, priv. com. 1996

b) ae(weak) = 0.030 × 10−12

estimated by scaling down from aµ(weak).
Czarnecki et al., PRL 76, 3267 (1996)
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• To compare theory with measured value of ae one needs
α obtained by some non-QED measurements.

• Best α available at present is one obtained by atom
interferometry combined with cesium D1 line
measurement:

α−1(h/MCs) = 137.036 000 3 (10) (7.4 ppb)
A. Wicht et al. in Proc. of 6th Symp. on Freq. Standards
and Metrology (World Sci., 2002), pp.193 -212

• This leads to

ae(h/MCs) = 1 159 652 174.19 (0.11)(0.26)(8.48) × 10−12

(8th)(10th)(α(h/MCs))

ae(exp) − ae(h/MCs) = 11.8 (9.5) × 10−12,

assuming A
(10)
1 = 0.0(3.8).

• Error 8.48 of α(h/MCs) is still large but comparable with error
of Seattle experiment.
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• Very recent developments:

(1) Relative uncertainty of Wicht et al. has been reduced to 4 ppb.

(2) Measurement of recoil velocity of 87Rb atom based on Bloch
oscillations in a vertically accelerated optical lattice by
French group gives

α−1(h/MRb
) = 137.035 998 78 (91) (6.7 ppb)

P. Claré et al. submitted to PRL.

• Statistical uncertainty: 4.4 ppb, Systematic uncertainty: 5.0 ppb.

• These uncertainties will be reduced further.

12



4. Muon g − 2: Measurement and Interpretation.

• First precision measurement (7ppm) at CERN.

• After years of hard work muon g-2 measurement at
BNL has come close to the design goal (0.35 ppm).

• The current world-average is

aµ(exp) = 11 659 208 (6) × 10−10 (0.5 ppm)

Bennett et al., PRL 92, 161802 (2004)

• Few years ago apparent disagreement with Standard
Model caused a lot of excitement as indicator of
possible new physics.

• By now it is clear that prediction of SM must be known
more precisely in order to explore physics beyond SM.

• SM prediction consists of QED, electroweak,
and hadronic parts.
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• Largest uncertainty comes from hadronic v-p term.

• It is calculated from three types of measurements:

(1) e+e− → hadrons,

(2) τ± → ν + π± + π0 (with isospin invariance) ,

(3) e+e− → γ + hadrons (radiative return) .

• Process (3), the latest arrival, seems to agree with (1).

• Process (1) has been analyzed by many groups over
years. Some recent results are

aµ(had.vp) = 6934 (53)exp (35)rad × 10−11

Höcker, hep-ph/0410081 (2004)

aµ(had.vp) = 6924 (59)exp (24)rad × 10−11

Hagiwara et al., PRD 69, 093003 (2004)

aµ(had.vp) = 6944 (48)exp (10)rad × 10−11

Trocóniz,Ynduráin, hep-ph/0402285 (2004)
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• Recent estimate of hadronic l-l contribution:

aµ(had.ll) = 136 (25) × 10−11

Melnikov, Vainshtein, arXiv:hep-ph/0312226

• NLO hadronic contribution:

aµ(had.NLO) = −101 (6) × 10−11

Hagiwara et al., PRD 69, 093003 (2004)

• Electroweak contribution to 2-loop order:

aµ(weak) = 152 (1) × 10−11

Knecht et al., JHEP 11, 003 (2002)

aµ(weak) = 154 (1)(2) × 10−11

Czarnecki et al., PRD 67, 073006 (2003)
‘
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5. Muon g − 2: Current Status of QED Correction.

• aµ(QED) can be written in the general form:

aµ(QED) = A1 + A2(mµ/me) + A2(mµ/mτ ) + A3(mµ/me,mµ/mτ )

Ai = A
(2)
i

(

α
π

)

+ A
(4)
i

(

α
π

)2
+ A

(6)
i

(

α
π

)3
+ . . . , i = 1,2,3.

• A1 is common to ae and aµ. A
(4)
2 , A

(6)
2 , A

(6)
3 evaluated by numerical

int., analytic int., asymptotic expansion in mµ/me, or power series
expansion in mµ/mτ . Errors are due to α, mµ and mτ only.

A
(4)
2 (mµ/me) = 1.094 258 311 1(84)

A
(4)
2 (mµ/mτ ) = 7.8064 (25) × 10−5

A
(6)
2 (mµ/me) = 22.868 380 02(20)

A
(6)
2 (mµ/mτ ) = 36.051(21) × 10−5

A
(6)
3 (mµ/me,mµ/mτ ) = 0.527 66 (17) × 10−3

Kinoshita NCB 51, 140(1967)
Laporta NCB 106, 675(1993)

Laporta,Remiddi,PLB 301, 440(1993)
Czarnecki,Skrzypek,PLB 449, 354(1999)
Updated by Passera,hep − ph/0411168
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• A
(8)
2 (mµ/me) and A

(8)
2 (mµ/me,mµ/mτ ) have been evaluated

thus far by numerical method only.

• Evaluated by Monte-Carlo integration code VEGAS.
Lepage, J. Comput. Phys. 27, 192 (1978).

• Latest results are

A
(8)
2 (mµ/me) = 132.6823(72)

A
(8)
3 (mµ/me,mµ/mτ) = 0.0376(1)

Kinoshita,Nio,PRD 70, 113001(2004)

• Improved by more than an order of magnitude
over previous results.

• As is discussed later we also obtained an improved

value of A
(10)
2 :

A
(10)
2 (mµ/me) = 652(20),

Kinoshita, Nio, preliminary.
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• Total QED contribution to aµ, including α5 term, is

aµ(QED) = 116 584 717.72 (0.02)(0.14)(0.85) × 10−11

(8th)(10th)(α(h/MCs))

using

α−1(h/MCs) = 137.036 000 3 (10) (7.4 ppb)

• Including hadronic v-p and l-l terms and electroweak
term, the SM value of aµ is

aµ(SM) = 116 591 870.7 (76.2) × 10−11

aµ(exp) − aµ(SM) = 209 (97) × 10−11

where uncertainty in ”theory” is mostly due to
hadronic v-p terms.
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Summary: Relative contribution of various terms.

——————————————————————-

α term 994623 ppm known exactly

α2 term 5064 ppm known exactly

α3 term 246 ppm known exactly

aµ(had) ∼ 60 ppm ∼ 0.6 ppm

α4 term 3.9 ppm 0.0002 ppm

aµ(e − w) 1.3 ppm ∼ 0.02 ppm

α5 term 0.044 ppm 0.0014 ppm

——————————————————————-

expt. uncertainty 0.5 ppm
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6. Tenth-order term: Why needed ?

• Very important byproduct of study of ae is that it is
the best source of α.

• If we use Odom’s report we find

α−1(ae) = 137.035 999 708 (12) (31) (68) (0.55 ppb)

(α4) (α5) (expt)

• This is almost an order of magnitude better than any
other measurements of α.

• Uncertainty of this measurement is only factor 2 larger
than that of theory, which is mostly from the α5 term,
since α4 is known with small error.

• Thus, when measurement improves further, reduction
of uncertainty of α5 term will become necessary
in order to obtain a better α(ae).
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• For muon, old estimate of A
(10)
2 (mµ/me) was 930 (170),

which contributes only 0.054 ppm to aµ, well within
current experimental uncertainty.

• Thus improving A
(10)
2 (mµ/me) is not urgent.

• But it will become important source of error in next
generation of aµ measurement.

• This is why we tried to obtain a better estimate

of A
(10)
2 (mµ/me).

• The number of diagrams contributing to A
(10)
2 (mµ/me) is

9080 !

• Fortunately, we found out that it is not too difficult

to improve A
(10)
2 (mµ/me) substantially.

Kinoshita, Nio, in preparation.
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• For the electron A
(10)
1 (12672 Feynman diagrams) is much

harder to evaluate, but we developed an algorithm that
makes it feasible.

Aoyama, Hayakawa, Kinoshita, Nio, in progress

• This will be discussed by the next speaker.

• Anyway the first step is to classify all tenth-order
diagrams into gauge-invariant sets.

• There are 32 g-i sets within 6 supersets.
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I(a) I(b) I(c)

I(d) I(e) I(f)

I(g) I(h) I(i)

I(j)

Figure 4: Some diagrams of Set I.

Set I is built from a second-order vertex. 208 diagrams contribute to

A
(10)
1 . 498 diagrams contribute to A

(10)
2 (mµ/me).
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II(a) II(b) II(c)

II(d) II(e) II(f)

Figure 5: Diagrams of Set II.

Set II is built from fourth-order proper vertices. 600 diagrams con-

tribute to A
(10)
1 . 1176 diagrams ontribute to A

(10)
2 (mµ/me).

III(a) III(b) III(c)

Figure 6: Diagrams of Set III.

Set III is built from sixth-order proper vertices. 1140 diagrams con-

tribute to A
(10)
1 . 1740 diagrams contribute to A

(10)
2 (mµ/me).

24



Figure 7: Diagrams of Set IV.

Set IV is built from eighth-order proper vertices. 2072 diagrams

contribute to both A
(10)
1 and A

(10)
2 (mµ/me).

Figure 8: Diagrams of Set V.

Set V consists of 10th-order proper vertices with no closed lepton

loop. 6354 Feynman diagrams. They contribute only to A
(10)
1 .
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VI(a) VI(b) VI(c)

VI(d) VI(e) VI(f)

VI(g) VI(h) VI(i)

VI(j) VI(k)

Figure 9: Diagrams of Set VI.

Set VI consists of diagrams containing various l-l-scattering subdgrams.

2298 contribute to A
(10)
1 . 3594 contribute to A

(10)
2 (mµ/me).
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7. A
(10)
2 (mµ/me) of muon g-2

• Fortunately, for A
(10)
2 (mµ/me), it is not difficult to see

which g-i sets give large contribution.

• They are the sets containing light-by-light scattering
subdiagram and/or vacuum-polarization subdiagram,
both of which are sources of ln(mµ/me).

Kinoshita et al., PRD 41, 593 (1990)

Karshenboim, Yad. Phys. 56, 252 (1993)

• Largest contribution comes from Set VI(a) [252 diagrams].

• Next largest comes from Set VI(b) [162 diagrams].

• We have evaluated them precisely:

A2[VI(a)] = 629.1407 (118) (it was 570 (140))∗

A2[VI(b)] = 181.1285 ( 51) (it was 176 ( 35))∗

—————————————————————-
∗ Still preliminary. Please don’t quote until posted on the web.
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• Largest remaining contribution is likely to come from VI(k)
[120 diagrams] whose leading log term was studied previously :

A2[VI(k)] ' Cnπ
4 log(mµ/me) + . . . .

Elkhovskii, Yad. Phys. 49, 1059 (1989)

Cn = 0.438 . . . .

Milstein,Elkhovskii, Phys. Lett. 233B, 11 (1989)

• This led to the estimate

A2[VI(k)] = 185 (85).
Karshenboim, Yad. Phys. 56, 252 (1993)

• The huge π4 factor is due to the fact that log(me) comes from the
integration domain where all exchanged photons have |k| << me.

• In this domain, electron moves non-relativistically in the Coulomb
potential of the muon, each Coulomb photon contributing a factor
iπ when its momentum is integrated out.
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• This estimate will be too crude since mµ/me ' 206 is far from
asymptotic. It may have to be reduced substantially, as was
the case with sixth-order light-by-light-scattering diagram.

• To answer this question it is best to evaluate them explicitly.

• It turned out that this is not difficult.

• Our first step is to reduce the number of integrals to 12 using

Λν(p,q) ' −qµ[
∂Λµ(p,q)

∂qν
]q=0 −

∂Σ(p)
∂pν

,

and reduce it further to 9 using time-reversal symmetry.
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• Starting from RHS of this identity, FORM generates more than
90,000 terms occupying about 30,000 lines of FORTRAN code.

• Not too bad: It is huge
but only 30 times larger than eighth-order integrals.

• Numerical integration (over 13-dim. Feynman parameter space)
is carried out by VEGAS.

• Our result is

A2[VI(k)] = 86.692 (91).∗

• Clearly previous value was overestimate by ∼ 100.

—————————————————————-
∗ Still preliminary. Please don’t quote until posted on the web.
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• Another possibly large term is VI(j) [162 vertex diagrams].

• Karshenboim’s guess:

A2[VI(j)] = 0 ± 40,

• We decided to evaluate contribution of these diagrams explicitly.

• With the help of W-T transformation and time-reversal invariance
they can be represented by 4 independent integrals.

• FORM generated about 42,000 terms occupying about 18,000 lines
of FORTRAN code.

• Our result is

A2[VI(j)] = −25.5024 (24)∗.

—————————————————————-
∗ Still preliminary. Please don’t quote until posted on the web.
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Other sets computed (not yet fully double-checked) are:

A2[I(a)] = 22.553 17 (25)∗

A2[I(b)] = 30.667 54 (33)∗

A2[I(c)] = 5.141 38 (15)∗

A2[I(d)] = 8.892 07 (102)

A2[I(e)] = −1.219 20 (71)

A2[I(f)] = 3.685 10 (13)

A2[II(a)] = −70.4717 (38)∗

A2[II(b)] = −34.7717 (26)∗

A2[II(f)] = −77.5224 (414)

A2[VI(c)] = −36.5763 (1141)

A2[VI(e)] = −4.3215 (1341)

A2[VI(f)] = −38.1502 (1545)

A2[VI(i)] = −27.3373 (1147)

Parts of data with * contain analytic results.
Laporta, PLB 328, 522 (1994)
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• Thus far we have evaluated 2958 Feynman diagrams of A
(10)
2 (mµ/me).

• Remaining 6122 diagrams are not likely to give large contribution.

• Our provisional estimate for the 10th-order term is

A
(10)
2 (mµ/me) = 652(20)

∗
,

which is smaller by about 280 than the old crude estimate

A
(10)
2 (mµ/me) = 930(170).

• To improve it further we have to evaluate all remaining
Feynman diagrams.

• It is a matter of time to finish it.

• It is put on hold temporarily because our attention
is now focused on the electron g-2.

—————————————————————-
∗ Still preliminary. Please don’t quote until posted on the web.
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8. A
(10)
1 term of electron g-2

• Electron g-2 is much harder to evaluate.

• Besides its huge size, none of 12672 diagrams is dominant
so that every term must be evaluated accurately.

• Very large and difficult diagrams are mostly in Set V,
set of 6354 Feynman diagrams without closed lepton loop.

• This number can be reduced to 706 by W-T transform.

• Time reversal invariance cuts it down further to 389.
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Figure 10: Overview of all diagrams contributing to Set V.
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• Both the number of diagrams and size of their integrals
are an order of magnitude larger than the α4 case.

• Thus job will be two to three orders of magnitude more
difficult.

• While the method for α4 applies to α5 equally well,
its execution for α4 was rather pedestrian.

• It would take more than 100 years if α5 were handled
at the same pace as the α4 case.

• Obviously, to finish α5 case within reasonal time, we
must automate the computation as much as possible.

• This is the subject of next talk by Aoyama.

• As a prelude to his talk let me outline how previous
approach was formulated.
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(I) Identify diagrams contributing to g-2 and their
UV- and IR-divergent subdiagrams.

(II) Convert momentum integral obtained by Feynman-
Dyson rule to integral, whose integrand is function
of Feynman parameters zi and functions Ai , Bij,
i, j = 1, ..., N .

(III) Express Ai and Bij as explicit functions of zi.

(IV) Build counter terms of UV- and IR-divergences.

• Step II is the most difficult one and was carried out
analytically by FORM for α3 and α4.

• Part of Step IV was automated, too.

• In the α3 and α4 cases other steps were not difficult
and carried out manually.
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• For the α5 case all these steps are so huge that it is
close to impossible without full automation.

• The goal of our project is to make all steps, including
renormalization, controled entirely by input information
which is one-line computer representation of Feynman
diagram.

• We have been able to achieve such an automation by
a code which faithfully simulates analysis of forest
of diagrams by Zimmermann.

• Thus far we generated FORTRAN codes for all 2232
diagrams which contain only vertex subdiagrams.
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• Numerical evaluation of these integrals gives rough idea
how large and difficult they actually are.

• Typical integrand has about quarter million terms
occupying about 80,000 line of FORTRAN code.

• This is about 3 times larger than Set VI(k) diagrams,
which is still manageable.

• Integration by VEGAS had no problem thus far.

• Complete automation, including diagrams containing
self-energy subdiagrams, will be achieved shortly.

• Although this project is far from finished, we might
say that we have come a long way to realize physicists’
pipe dream since Feynman diagram was invented more
than half century ago.
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