ELECTROWEAK SUDAKOV LOGARITHMS

J.H. Kühn, Karlsruhe

J.H.K., A.A. Penin;	hep-ph/9906545
J.H.K., A.A. Penin, V.A. Smirnov;	Eur. Phys. J. C17 (2000) 97
J.H.K., S. Moch, A.A. Penin, V.A. Smirnov;	Nucl. Phys. B616 (2001) 286
B. Feucht-Jantzen, J.H.K., S. Moch;	Phys. Lett. B561 (2003) 111
B. Jantzen, J.H.K., A.A. Penin, V.A. Smirnov; Phys. Phys.	Rev. Lett. 93 (2004) 101802 Rev. D72 (2005) 051301 (R) hep-ph/0509157
J.H.K., A. Kulesza, S. Pozzorini, M. Schulze;	Phys. Lett. B609 (2005) 277 hep-ph/0507178 hep-ph/0508253

- Introduction
- Form factors at two loop in N³LL approximation
- Four fermion scattering in N³LL approximation
- Z-boson and photon production at hadron colliders
- Summary

Introduction

One-Loop

example: massive U(1)

$$M \qquad \Rightarrow \text{ Born} * \left[1 + \frac{\alpha}{4\pi} \left(-\ln^2 \frac{s}{M^2} + 3\ln \frac{s}{M^2} - \frac{7}{2} + \frac{\pi^2}{3} \right) \right]$$

magnitude $\left(\frac{\alpha_w}{4\pi} = 3 \cdot 10^{-3}\right)$

$\frac{s}{M^2}$	$-\ln^2 \frac{s}{M^2}$	$+3 \ln \frac{s}{M^2}$	$-\frac{7}{2}+\frac{\pi^2}{3}$	Σ	$*\frac{4}{4}\frac{\alpha_w}{4\pi}$
$\left(\frac{1000}{80}\right)^2$	-25.52	+15.15	-0.21	-10.6	-13%
$\left(\frac{2000}{80}\right)^2$	-41.44	+19.31	-0.21	-22.3	-27%

(four-fermion cross section \Rightarrow factor 4)

Two-Loop

Four-fermion processes, status:

- LL: Fadin et al. (2000)
- NLL: J.H.K., Penin, Smirnov (2000) Large (!) subleading corrections important angular dependent terms
- NNLL: J.H.K., Moch, Penin, Smirnov (2001) Large (!) NNLL terms, oscillating signs of LL, NLL, NNLL ⇒ compensations

⇒ N³LL and constant terms desirable ⇒ N³LL now available (Jantzen, J.H.K., Penin, Smirnov)

Additional complication in SM: massless photon

 $|Q^2| \gg M_{W,Z}^2 \gg m_{\gamma}^2$

Form factors at two loop

A) Form Factor and Evolution Equations

Born:

$$\mathcal{F}_{\mathsf{Born}} = ar{\psi}(p_2) \gamma_\mu \psi(p_1)$$

$$\frac{\partial}{\partial \ln Q^2} \mathcal{F} = \left[\int_{M^2}^{Q^2} \frac{\mathrm{d}x}{x} \gamma(\alpha(x)) + \zeta(\alpha(Q^2)) + \xi(\alpha(M^2)) \right] \mathcal{F}$$
Collins, Sen

$$\Rightarrow \mathcal{F} = \mathcal{F}_{\text{Born}} F_0(\alpha(M^2)) \exp\left\{\int_{M^2}^{Q^2} \frac{\mathrm{d}x}{x} \left[\int_{M^2}^{x} \frac{\mathrm{d}x'}{x'} \gamma(\alpha(x')) + \zeta(\alpha(x)) + \xi(\alpha(M^2))\right]\right\}$$

aim: N⁴LL \Rightarrow corresponds to all terms of the form: $\alpha^{n} \left[\ln^{2n} \left(\frac{Q^{2}}{M^{2}} \right) + \ln^{2n-1} \left(\frac{Q^{2}}{M^{2}} \right) + \ln^{2n-2} \left(\frac{Q^{2}}{M^{2}} \right) + \ln^{2n-3} \left(\frac{Q^{2}}{M^{2}} \right) + \ln^{2n-4} \left(\frac{Q^{2}}{M^{2}} \right) \right]$ LL NLL NNLL N³LL N⁴LL

NNLL (previous result) requires running of α (i.e. β_0 and β_1) and: $\zeta(\alpha), \ \xi(\alpha), \ F_0(\alpha)$ up to $\mathcal{O}(\alpha)$ $\gamma(\alpha)$ up to $\mathcal{O}(\alpha^2)$

N³LL requires two-loop calculation in high-energy limit including linear logarithms (available for non-abelian theory)

N⁴LL requires complete two-loop calculation in high-energy limit (available for abelian theory)

B) Two-Loop Results: Massive U(1) Model

$$f^{(1)} = -\mathcal{L}^{2} + 3\mathcal{L} - \frac{7}{2} - \frac{2}{3}\pi^{2} \approx -\mathcal{L}^{2} + 3\mathcal{L} - 10.1, \qquad \mathcal{L} \equiv \ln(Q^{2}/M^{2})$$

$$f^{(2)} = \frac{1}{2}\mathcal{L}^{4} - 3\mathcal{L}^{3} + \left(8 + \frac{2}{3}\pi^{2}\right)\mathcal{L}^{2} - \left(9 + 4\pi^{2} - 24\zeta_{3}\right)\mathcal{L} + \frac{25}{2}$$

$$+ \frac{52}{3}\pi^{2} + 80\zeta_{3} - \frac{52}{15}\pi^{4} - \frac{32}{3}\pi^{2}\ln^{2}2 + \frac{32}{3}\ln^{4}2 + 256\operatorname{Li}_{4}\left(\frac{1}{2}\right)$$

$$\approx + 0.5\mathcal{L}^{4} - 3\mathcal{L}^{3} + 14.6\mathcal{L}^{2} - 19.6\mathcal{L} + 26.4$$

NNLL in agreement with previous results!

Two-loop result $f^{(2)}$:

with M = 80 GeV, $\frac{\alpha}{4\pi} = 3 \cdot 10^{-3}$

C) Massive SU(2) form factor in 2-loop approximation

2-loop vertex diagrams (massless fermions, massive bosons):

+ 1-loop×1-loop corrections + renormalization

Size of the logarithmic contributions

2-loop form factor F_2 at Q = 1 TeV (in 1/1000):

Abelian
$$(C_F^2)$$
: $+ 0.3 \ln^4 - 1.7 \ln^3 + 8.2 \ln^2 - 11 \ln + 15$
 $-2.0 + 1.9$ $- 11 \ln + 15$
 $-0.5 + 0.1$ non-Abelian $(C_F C_A)$: $+ 1.8 \ln^3 - 14 \ln^2 + 46 \ln - \dots$
 $+2.1 - 3.3$ $+ 46 \ln - \dots$
 $+2.1$ Higgs: $- 0.04 \ln^3 + 0.5 \ln^2 - 2.3 \ln + \dots$
 $-0.04 + 0.1$ $- 0.1$ fermionic $(C_F T_F n_f)$: $- 0.5 \ln^3 + 4.8 \ln^2 - 13 \ln + 21$
 $-0.6 + 1.1$ $- 0.6 + 0.2$
 $\ln^{4.3.2}$: J.H.K., Moch, Penin, Smirnov

In^{1,0}: Jantzen, J.H.K., Moch; Jantzen, J.H.K., Penin, Smirnov

- \rightarrow growing coefficients with alternating signs
- \Rightarrow cancellations between logarithmic terms
- \hookrightarrow NNLL approximation is not enough!

Abelian & fermionic contribution: $\ln^1 \text{ small}$, $\ln^0 \text{ negligible} \Rightarrow N^3 LL \text{ approximation}$ including \ln^1 is sufficient (non-Abelian \ln^0 more difficult)

Massive SU(2) form factor in 2-loop approximation: result

$$\alpha^{2}F_{2} = \left(\frac{\alpha}{4\pi}\right)^{2} \left[\left. + \frac{9}{32} \ln^{4}\left(\frac{Q^{2}}{M^{2}}\right) - \frac{19}{48} \ln^{3}\left(\frac{Q^{2}}{M^{2}}\right) - \left(-\frac{7}{8}\pi^{2} + \frac{463}{48}\right) \ln^{2}\left(\frac{Q^{2}}{M^{2}}\right) \right] \\ \left. + \left(\frac{39}{2}\frac{\text{Cl}_{2}\left(\frac{\pi}{3}\right)}{\sqrt{3}} + \frac{45}{4}\frac{\pi}{\sqrt{3}} - \frac{61}{2}\zeta_{3} - \frac{11}{24}\pi^{2} + 29\right) \ln\left(\frac{Q^{2}}{M^{2}}\right) \right] \\ \left. + \left(\frac{39}{2}\frac{\text{Cl}_{2}\left(\frac{\pi}{3}\right)}{\sqrt{3}} + \frac{45}{4}\frac{\pi}{\sqrt{3}} - \frac{61}{2}\zeta_{3} - \frac{11}{24}\pi^{2} + 29\right) \ln\left(\frac{Q^{2}}{M^{2}}\right) \right] \\ \left. + \left(\frac{10^{4}}{1000}\right) + \frac{1000}{1000} + \frac{1000}{1000}$$

J.H. Kühn/ RADCOR 05/ JAPAN

Q [GeV]

Massive SU(2) form factor in 2-loop approximation: individual contributions

(N³LL approximation, $M_{\text{Higgs}} = M$, $n_f = 3$, Feynman-'t Hooft gauge)

U(1)×U(1) Model useful for QED×Weak and QCD×EW $(\alpha, M) \times (\alpha', \lambda)$

factorization for $Q^2 \gg M^2 \gg \lambda^2$:

$$\mathcal{F}_{\alpha',\alpha}(\lambda, M, Q) = \tilde{F}_{\alpha',\alpha}(M, Q) \underbrace{\mathcal{F}_{\alpha'}(\lambda, Q)}_{\text{as before}} + \mathcal{O}(\lambda/M)$$

$$\Rightarrow \tilde{F}_{\alpha',\alpha}(M,Q) = \left[\frac{\mathcal{F}_{\alpha',\alpha}(\lambda,M,Q)}{\mathcal{F}_{\alpha'}(\lambda,Q)}\right]_{\lambda \to 0}$$

evaluated with dimensional regularization for IR singularities

$$\tilde{F}_{\alpha',\alpha}(M,Q) = 1 + \frac{\alpha}{4\pi} f^{(1)} + \left(\frac{\alpha}{4\pi}\right)^2 f^{(2)} + \frac{\alpha'\alpha}{(4\pi)^2} \tilde{f}^{(1,1)} + \dots$$
$$\tilde{f}^{(1,1)} = \left(3 - 4\pi^2 + 48\zeta_3\right) \mathcal{L} - 2 + \frac{20}{3}\pi^2 - 84\zeta_3 + \frac{7}{45}\pi^4$$

important observation: no \mathcal{L}^2 terms \Rightarrow consistent with evolution equations J.H.K., Penin, Smirnov (2000) Complete result for $\tilde{f}^{(1,1)}(z)$ available in analytical form $(z = \frac{Q^2}{M^2})$ Kotikov, J.H.K., Veretin

Exponentiation, Factorization and Matching

Massive U(1) Theory

5 terms in the two-loop result $\Rightarrow N^4LL$ approximation in all orders:

$$\mathcal{F}_{\alpha}(M,Q) = \exp\left\{\frac{\alpha}{4\pi} \left[-\mathcal{L}^{2} + \left(3 + \frac{\alpha}{4\pi} \left(\frac{3}{2} - 2\pi^{2} + 24\zeta_{3}\right) + \mathcal{O}(\alpha^{2})\right)\mathcal{L}\right]\right\} \mathcal{F}_{\alpha}(M,M)$$

$U(1) \times U(1)$ Theory

matching relation: $\mathcal{F}_{\alpha',\alpha}(M,M,Q) = C_{\alpha',\alpha}(M,Q) \,\tilde{F}_{\alpha',\alpha}(M,Q) \,\mathcal{F}_{\alpha'}(M,Q)$

$$\Rightarrow C_{\alpha',\alpha}(M,Q) = 1 + \frac{\alpha'\alpha}{(4\pi)^2} \left[\frac{59}{4} + \frac{70}{3}\pi^2 + 244\zeta_3 - \frac{113}{15}\pi^4 - \frac{64}{3}\pi^2 \ln^2 2 + \frac{64}{3}\ln^4 2 + 512\operatorname{Li}_4\left(\frac{1}{2}\right) \right]$$

- no logarithmic terms!
- $\tilde{F}_{\alpha',\alpha}(M,Q) \mathcal{F}_{\alpha'}(\lambda,Q)$ approaches $\mathcal{F}_{\alpha',\alpha}(\lambda,M,Q)$ for $\lambda \to M$ in N³LL accuracy!
- all logs in theory with mass gap are obtained from symmetric phase

Four fermion scattering

Evaluation in the high energy limit

define

$$\mathcal{A}^{\lambda} = \bar{\psi}_{2} t^{a} \gamma_{\mu} \psi_{1} \bar{\psi}_{4} t^{a} \gamma_{\mu} \psi_{3}$$

$$\mathcal{A}^{\lambda}_{LL} = \bar{\psi}_{2L} t^{a} \gamma_{\mu} \psi_{1L} \bar{\psi}_{4L} t^{a} \gamma_{\mu} \psi_{3L}$$

$$\mathcal{A}^{d}_{LR} = \bar{\psi}_{2L} \gamma_{\mu} \psi_{1L} \bar{\psi}_{4R} \gamma_{\mu} \psi_{3R}$$

define "reduced" amplitude $\tilde{\mathcal{A}}$

$$\mathcal{A} = \frac{ig^2}{s} \mathcal{F}^2 \tilde{\mathcal{A}}$$

evolution equation

$$\frac{\partial}{\partial \ln Q^2} \tilde{\mathcal{A}} = \chi(\alpha(Q^2))\tilde{\mathcal{A}}$$

 $\tilde{\mathcal{A}}$: vector in isospin/chiral basis χ : matrix

N³LL requires:

- form factor up to N³LL
- χ up to two loop, as obtained from hard contribution to single pole part of 4-fermion scattering amplitude

e.g. pure massive SU(2) theory with SSB:

$$\sigma^{(2)} = \left[\frac{9}{2}\mathcal{L}^{4} - \frac{449}{6}\mathcal{L}^{3} + \left(\frac{4855}{18} + \frac{37}{3}\pi^{2}\right)\mathcal{L}^{2} + \left(\frac{34441}{216} - \frac{1247}{18}\pi^{2} - 122\zeta(3) + 15\sqrt{3}\pi + 26\sqrt{3}\text{Cl}_{2}\left(\frac{\pi}{3}\right)\right)\mathcal{L}\right]\sigma_{B}$$

for identical isospin in initial and final state

Electroweak theory

- infrared logs must be separated
- NNLL: complete
 - result insensitive to form of gauge-boson mass generation
 - term of order $1-M_W^2/M_Z^2=\sin^2\theta$ included
- N³LL
 - sensitive to details of mass generation, gauge boson mixing
 - Approximation: terms of $\mathcal{O}(\sin^2\theta)$ neglected

Result for the correction factor

$$\begin{aligned} R(e^+e^- \to Q\bar{Q}) &= 1 - 1.66\,L(s) + 5.60\,l(s) - 8.39\,a + 1.93\,L^2(s) \\ &- 11.28\,L(s)\,l(s) + 33.79\,l^2(s) - 150.95\,l(s)\,a \\ R(e^+e^- \to q\bar{q}) &= 1 - 2.18\,L(s) + 20.94\,l(s) - 35.07\,a + 2.79\,L^2(s) \\ &- 51.98\,L(s)\,l(s) + 321.34\,l^2(s) - 603.43\,l(s)\,a \\ R(e^+e^- \to \mu^+\mu^-) &= 1 - 1.39\,L(s) + 10.12\,l(s) - 21.26\,a + 1.42\,L^2(s) \\ &- 20.33\,L(s)\,l(s) + 112.57\,l^2(s) - 260.15\,l(s)\,a \end{aligned}$$

with

$$L(s) = \frac{g^2}{16\pi^2} \ln^2 \left(\frac{s}{M^2}\right) = 0.07 \quad (0.11)$$
$$l(s) = \frac{g^2}{16\pi^2} \ln \left(\frac{s}{M^2}\right) = 0.014 \quad (0.017)$$
$$a = \frac{g^2}{16\pi^2} = 0.003$$

for $\sqrt{s} = 1$ TeV (2 TeV)

Separate logarithmic contributions to $R(e^+e^- \rightarrow q\bar{q})$ in % to the Born approximation

one-loop LL $(\ln^2(s/M^2))$, NLL $(\ln^1(s/M^2))$ and N²LL $(\ln^0(s/M^2))$

two-loop LL $(\ln^4(s/M^2))$, NLL $(\ln^3(s/M^2))$, NNLL $(\ln^2(s/M^2))$ and N³LL $(\ln^1(s/M^2))$

Total logarithmic corrections in % to the Born approximation: $R(e^+e^- \rightarrow Q\bar{Q})$, $R(e^+e^- \rightarrow q\bar{q})$ and $R(e^+e^- \rightarrow \mu^+\mu^-)$

one-loop correction up to N^2LL term

two-loop correction up to N^3LL term

Z/photon production at large transverse momenta

J.H.K., Kulesza, Pozzorini, Schulze

Large rate for Z-boson and photon production at LHC at large p_T (1-2 TeV) Large electroweak corrections ($\hat{s} \gg M_{W,Z}^2$)

Complete one loop calculation NLL approximation at two loops

Relative NLO and NNLO corrections w.r.t. the LO and statistical error for the unpolarized integrated cross section for $pp \rightarrow Zj$ at $\sqrt{s} = 14$ TeV.

- one loop effects are large (\sim 30% at $p_T \sim$ 1Tev)
- two loop effects (based on Denner, Melles, Pozzorini; Melles)
- become relevant above 1 TeV
- important angular-dependent logarithmic terms
- experiment will explore p_T up to 2 TeV

Compact analytical formulae for one loop results

in NNLL approximation ($\ln^2 + \ln + \text{const.}$) provide an excellent description (better than 2×10^{-3}) of complete result

Corrections at the Tevatron ($\sqrt{s} = 2 \text{ TeV}$)

amount up to 5%

Relative NLO and NNLO corrections w.r.t. the LO and statistical error (shaded area) for the unpolarized integrated cross section for $p\bar{p} \rightarrow Zj$ at $\sqrt{s} = 2$ TeV as a function of p_T^{cut} .

Similar results for $pp \rightarrow \gamma + X$

Summary

- Large logarithmic corrections at large energies: NLL, N²LL, N³LL important
- N³LL and N⁴LL (partly) available for form factor
- N³LL available for 4-fermion scattering
- special role of massless bosons (γ and g) \rightarrow factorization of IR singularities
- Z-boson and γ production at large p_T accessible at LHC
- Full one loop and NLL-terms at two loop are under control
- first applications: LHC; important issue for LC