NLO QCD Corrections to Drell-Yan in TeV-scale Gravity Models

V. Ravindran
Harish-Chandra Research Institute, Allahabad

- Graviton mediated Drell-Yan
- QCD Factorisation scale ambiguity
- NLO corrections to new physics
- Conclusions

In collaboration with
Willy van Neerven, Prakash Mathews and K. Sridhar

Snap shot of my talk

Snap shot of my talk

- Perturbative QCD provides a frame work to compute infrared safe observables at high energies.

Snap shot of my talk

- Perturbative QCD provides a frame work to compute infrared safe observables at high energies.
- They are "often" sensitive to

1) Renormalisation scale
2) Factorisation scale
3) Missing higher order contributions(stability of perturbation)
4) Non-perturbative quantities that enter, such as parton density functions

Snap shot of my talk

- Perturbative QCD provides a frame work to compute infrared safe observables at high energies.
- They are "often" sensitive to

1) Renormalisation scale
2) Factorisation scale
3) Missing higher order contributions(stability of perturbation)
4) Non-perturbative quantities that enter, such as parton density functions

- Solution to (1) to (3) to compute higher order QCD corrections.

Snap shot of my talk

- Perturbative QCD provides a frame work to compute infrared safe observables at high energies.
- They are "often" sensitive to

1) Renormalisation scale
2) Factorisation scale
3) Missing higher order contributions(stability of perturbation)
4) Non-perturbative quantities that enter, such as parton density functions

- Solution to (1) to (3) to compute higher order QCD corrections.
- $\boldsymbol{P}_{1}+\boldsymbol{P}_{\mathbf{2}} \rightarrow \boldsymbol{l}^{+} \boldsymbol{l}^{-}$is of course one of the most important processes to discover "new physics" at high energy colliders such as TeV scale gravity models (Large Extra-Dimensional theories)

Snap shot of my talk

- Perturbative QCD provides a frame work to compute infrared safe observables at high energies.
- They are "often" sensitive to

1) Renormalisation scale
2) Factorisation scale
3) Missing higher order contributions(stability of perturbation)
4) Non-perturbative quantities that enter, such as parton density functions

- Solution to (1) to (3) to compute higher order QCD corrections.
- $\boldsymbol{P}_{1}+\boldsymbol{P}_{2} \rightarrow l^{+} l^{-}$is of course one of the most important processes to discover "new physics" at high energy colliders such as TeV scale gravity models (Large Extra-Dimensional theories)
- Higher order QCD corrections increases the reliablity of the predictions of the theory

Large Extra Dimensions

Models of "Extra Dimensions" are now studied as serious contenders for "Physics Beyond SM"(BSM). They provide an alternate view of the "hierarchy" between the EW ($\sim 1 \mathrm{TeV}$) and the Planck scale ($\mathbf{1 0}^{\mathbf{1 6}} \mathrm{TeV}$)

Large Extra Dimensions

Models of "Extra Dimensions" are now studied as serious contenders for "Physics Beyond SM"(BSM). They provide an alternate view of the "hierarchy" between the EW ($\sim 1 \mathrm{TeV}$) and the Planck scale ($10^{16} \mathrm{TeV}$)

- Basically the "Geometry" of extra spacial dimensions may be responsible for the "Hierarchy"

```
Large vol of extra dim 
    ADD
ADD PLB 429(1998) RS PRL 83 (1999) }337
```


Large Extra Dimensions

Models of "Extra Dimensions" are now studied as serious contenders for "Physics Beyond SM"(BSM). They provide an alternate view of the "hierarchy" between the EW ($\sim 1 \mathrm{TeV}$) and the Planck scale ($10^{16} \mathrm{TeV}$)

- Basically the "Geometry" of extra spacial dimensions may be responsible for the "Hierarchy"

```
Large vol of extra dim 
    ADD
ADD PLB 429(1998) RS PRL 83 (1999) }337
```

- These theories should have a "viable mechanism" to "hide" the "extra dim" such that "space time" is effectively "four" consistent with "known physics".

Large Extra Dimensions

Models of "Extra Dimensions" are now studied as serious contenders for "Physics Beyond SM"(BSM). They provide an alternate view of the "hierarchy" between the EW ($\sim 1 \mathrm{TeV}$) and the Planck scale ($10^{16} \mathrm{TeV}$)

- Basically the "Geometry" of extra spacial dimensions may be responsible for the "Hierarchy"

```
Large vol of extra dim 
    ADD
ADD PLB 429(1998) RS PRL }83\mathrm{ (1999) }337
```

- These theories should have a "viable mechanism" to "hide" the "extra dim" such that "space time" is effectively "four" consistent with "known physics".
- No deviation at present accelerators leads to limits on extra dim $<\mathbf{1 0}^{-16} \mathrm{~cm}$

Kaluza-Klein Picture

Large Extra Dimensions

Models of "Extra Dimensions" are now studied as serious contenders for "Physics Beyond SM"(BSM). They provide an alternate view of the "hierarchy" between the EW ($\sim 1 \mathrm{TeV}$) and the Planck scale ($10^{16} \mathrm{TeV}$)

- Basically the "Geometry" of extra spacial dimensions may be responsible for the "Hierarchy"

```
Large vol of extra dim 
    ADD
ADD PLB 429(1998) RS PRL }83\mathrm{ (1999) }337
```

- These theories should have a "viable mechanism" to "hide" the "extra dim" such that "space time" is effectively "four" consistent with "known physics".
- No deviation at present accelerators leads to limits on extra dim $<\mathbf{1 0}^{-16} \mathrm{~cm}$

Kaluza-Klein Picture

Kaluza-Klein Modes

- Extra dimensions being compact, gravitational field will be periodic function in the extra dimension.
- In 4-dim it would correspond to nearly mass degenerate tower of KK modes $\boldsymbol{m}_{\vec{n}}^{\mathbf{2}} \sim \overrightarrow{\boldsymbol{n}}^{\mathbf{2}} / \boldsymbol{R}^{\mathbf{2}}$

Kaluza-Klein Modes

- Extra dimensions being compact, gravitational field will be periodic function in the extra dimension.
- In 4-dim it would correspond to nearly mass degenerate tower of KK modes $\boldsymbol{m}_{\vec{n}}^{\mathbf{2}} \sim \overrightarrow{\boldsymbol{n}}^{\mathbf{2}} / \boldsymbol{R}^{\mathbf{2}}$

Massless graviton and KK modes couple with SM fields with coupling $M_{P}^{-1} \sim R^{\frac{d}{2}}$

Gravity-QCD Coupling

Gravitational interaction with SM fields:

$$
S=S_{S M}-\frac{\kappa}{2} \int d^{n} x T_{\mu \nu}(x) G^{\mu \nu}(x)
$$

strength of interaction $\kappa \sim \sqrt{G_{N}} \sim M_{P}{ }^{-1}$
Energy momentum tensor:

$$
\begin{aligned}
T_{\mu \nu}^{Q C D} & =-g_{\mu \nu} \mathcal{L}_{Q C D}-F_{\mu \rho}^{a} F_{\nu}^{a \rho}-g_{\mu \nu} \frac{1}{\xi} \partial^{\rho}\left(A_{\rho} \partial^{\sigma} A_{\sigma}\right) \\
& +\left[\left(\frac{i}{4} \bar{\psi}\left[\gamma_{\mu}\left(\vec{\partial}_{\nu}-i g T^{a} A_{\nu}^{a}\right)-\gamma_{\mu}\left(\overleftarrow{\partial}_{\nu}+i g T^{a} A_{\nu}^{a}\right)\right] \psi\right.\right. \\
& \left.\left.+\frac{1}{\xi} A_{\nu}^{a} \partial_{\mu}\left(\partial^{\sigma} A_{\sigma}^{a}\right)+\partial_{\mu} \bar{\omega}^{a}\left(\partial_{\nu} \omega^{a}-g f^{a b c} A_{\nu}^{c} \omega^{b}\right)\right)+(\mu \leftrightarrow \nu)\right]
\end{aligned}
$$

\boldsymbol{A}_{μ}^{a}
ψ

Gauge fields
Fermionic fields
$\omega^{a} \quad$ Ghost fields
$G_{\mu \nu} \quad$ Graviton Fields
Gravitons couple to anything and everything

Feynman Rules

- QED

Giudice, Rattazzi, Well hep-ph/9811291; Han, Lykken, Zhang hep-ph/9811350; PM, Ravindran, Sridhar

Kaluza-Klein suppression in ADD

Kaluza-Klein suppression in ADD

- Summation of KK modes:

$$
\sum_{n} \frac{1}{Q^{2}-m_{\vec{n}}^{2}+i \epsilon}=\frac{16 \pi}{\kappa^{2}}\left(\frac{Q^{2}}{M_{S}^{2}}\right)^{\frac{d-2}{2}} \frac{1}{M_{S}^{4}} I\left(\frac{M_{S}}{Q}\right)
$$

Kaluza-Klein suppression in ADD

- Summation of KK modes:

$$
\sum_{n} \frac{1}{Q^{2}-m_{\vec{n}}^{2}+i \epsilon}=\frac{16 \pi}{\kappa^{2}}\left(\frac{Q^{2}}{M_{S}^{2}}\right)^{\frac{d-2}{2}} \frac{1}{M_{S}^{4}} I\left(\frac{M_{S}}{Q}\right)
$$

- (Coupling) ${ }^{2}$ (Sum over the KK mode) leads to

$$
(\kappa)^{2} \sum_{n} \frac{1}{Q^{2}-m_{\vec{n}}^{2}+i \epsilon} \Longrightarrow 16 \pi\left(\frac{Q^{2}}{M_{S}^{2}}\right)^{\frac{d-2}{2}} \frac{1}{M_{S}^{4}} I\left(\frac{M_{S}}{Q}\right)
$$

Kaluza-Klein suppression in ADD

- Summation of KK modes:

$$
\sum_{n} \frac{1}{Q^{2}-m_{\vec{n}}^{2}+i \epsilon}=\frac{16 \pi}{\kappa^{2}}\left(\frac{Q^{2}}{M_{S}^{2}}\right)^{\frac{d-2}{2}} \frac{1}{M_{S}^{4}} I\left(\frac{M_{S}}{Q}\right)
$$

- (Coupling) ${ }^{2}$ (Sum over the KK mode) leads to

$$
\begin{aligned}
(\kappa)^{2} \sum_{n} \frac{1}{Q^{2}-m_{\vec{n}}^{2}+i \epsilon} \Longrightarrow & 16 \pi\left(\frac{Q^{2}}{M_{S}^{2}}\right)^{\frac{d-2}{2}} \frac{1}{M_{S}^{4}} I\left(\frac{M_{S}}{Q}\right) \\
\frac{1}{M_{S}^{2+d}} & \sim \frac{1}{(T e V)^{2+d}}
\end{aligned}
$$

Planck suppression is compensated by High multiplicity of KK modes

Phenomenology with Extra-Dimension

In the Standard Model, the partonic cross sections decreases with the energy scale (\boldsymbol{Q} or $\boldsymbol{p}_{\boldsymbol{T}}$ involved):

$$
\hat{s} \frac{d}{d Q^{2}} \hat{\sigma}_{a b}^{S M}\left(\hat{s}, Q^{2}\right) \sim \frac{1}{Q^{2}}
$$

Phenomenology with Extra-Dimension

In the Standard Model, the partonic cross sections decreases with the energy scale (\boldsymbol{Q} or $\boldsymbol{p}_{\boldsymbol{T}}$ involved):

$$
\hat{s} \frac{d}{d Q^{2}} \hat{\sigma}_{a b}^{S M}\left(\hat{s}, Q^{2}\right) \sim \frac{1}{Q^{2}}
$$

In the Gravity mediated processes, the partonic cross sections increase monotonically with the energy scale involved:

$$
\hat{s} \frac{d}{d Q^{2}} \hat{\sigma}_{a b}^{G r a v i t y}\left(\hat{s}, Q^{2}, M_{S}\right) \quad \sim \frac{Q^{6}}{M_{S}^{8}}\left(\frac{Q^{2}}{M_{S}^{2}}\right)^{d-2} \quad Q<M_{S}
$$

Phenomenology with Extra-Dimension

In the Standard Model, the partonic cross sections decreases with the energy scale (\boldsymbol{Q} or $\boldsymbol{p}_{\boldsymbol{T}}$ involved):

$$
\hat{s} \frac{d}{d Q^{2}} \hat{\sigma}_{a b}^{S M}\left(\hat{s}, Q^{2}\right) \sim \frac{1}{Q^{2}}
$$

In the Gravity mediated processes, the partonic cross sections increase monotonically with the energy scale involved:

$$
\hat{s} \frac{d}{d Q^{2}} \hat{\sigma}_{a b}^{G r a v i t y}\left(\hat{s}, Q^{2}, M_{S}\right) \quad \sim \frac{Q^{6}}{M_{S}^{8}}\left(\frac{Q^{2}}{M_{S}^{2}}\right)^{d-2} \quad Q<M_{S}
$$

- Gravity mediated cross sections can show up at high \boldsymbol{Q}.

Phenomenology with Extra-Dimension

In the Standard Model, the partonic cross sections decreases with the energy scale (\boldsymbol{Q} or $\boldsymbol{p}_{\boldsymbol{T}}$ involved):

$$
\hat{s} \frac{d}{d Q^{2}} \hat{\sigma}_{a b}^{S M}\left(\hat{s}, Q^{2}\right) \sim \frac{1}{Q^{2}}
$$

In the Gravity mediated processes, the partonic cross sections increase monotonically with the energy scale involved:

$$
\hat{s} \frac{d}{d Q^{2}} \hat{\sigma}_{a b}^{G r a v i t y}\left(\hat{s}, Q^{2}, M_{S}\right) \quad \sim \quad \frac{Q^{6}}{M_{S}^{8}}\left(\frac{Q^{2}}{M_{S}^{2}}\right)^{d-2} \quad Q<M_{S}
$$

- Gravity mediated cross sections can show up at high \boldsymbol{Q}.
- The processes where the virtual/real KK gravitons contribute significantly:
(1) Di-lepton or Drell-Yan production at large invariant mass Q
(2) Di-photon or Di-boson production at large $\boldsymbol{Q}, \boldsymbol{P}_{\boldsymbol{T}}$
(3)Observables with missing energy
(...) . . .•

Drell-Yan Process

$$
\begin{aligned}
& P_{1}\left(p_{1}\right)+P_{2}\left(p_{2}\right) \rightarrow[\gamma, Z, G]+ \text { hadronic states }(X) \\
& \hookrightarrow l^{+}\left(k_{1}\right)+l^{-}\left(k_{2}\right) \quad\left(k_{1}+k_{2}\right)^{2}=Q^{2}
\end{aligned}
$$

Drell-Yan Process

$$
\begin{aligned}
& P_{1}\left(p_{1}\right)+P_{2}\left(p_{2}\right) \rightarrow[\gamma, Z, G]+ \text { hadronic states }(X) \\
& \hookrightarrow l^{+}\left(k_{1}\right)+l^{-}\left(k_{2}\right) \quad\left(k_{1}+k_{2}\right)^{2}=Q^{2}
\end{aligned}
$$

Drell-Yan Process

$$
\begin{aligned}
& P_{1}\left(p_{1}\right)+P_{2}\left(p_{2}\right) \rightarrow[\gamma, Z, G]+ \text { hadronic } \operatorname{states}(X) \\
& \hookrightarrow l^{+}\left(k_{1}\right)+l^{-}\left(k_{2}\right) \quad\left(k_{1}+k_{2}\right)^{2}=Q^{2}
\end{aligned}
$$

Drell-Yan Process

$$
\begin{aligned}
& P_{1}\left(p_{1}\right)+P_{2}\left(p_{2}\right) \rightarrow[\gamma, Z, G]+ \text { hadronic states }(X) \\
& \hookrightarrow l^{+}\left(k_{1}\right)+l^{-}\left(k_{2}\right) \quad\left(k_{1}+k_{2}\right)^{2}=Q^{2}
\end{aligned}
$$

Drell-Yan Process

$$
\begin{aligned}
& P_{1}\left(p_{1}\right)+P_{2}\left(p_{2}\right) \rightarrow[\gamma, Z, G]+ \text { hadronic states }(X) \\
& \hookrightarrow l^{+}\left(k_{1}\right)+l^{-}\left(k_{2}\right) \quad\left(k_{1}+k_{2}\right)^{2}=Q^{2}
\end{aligned}
$$

Contributing Subprocess

Leading Order:

Standard Model	Gravity
$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \gamma / \boldsymbol{Z}$	$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \boldsymbol{G}$
	$g+\boldsymbol{g} \rightarrow \boldsymbol{G}$

Born contributions

QCD improved Parton Model

$$
P_{1}+P_{2} \rightarrow l^{+} l^{-}+X \quad m_{h}^{2}=\left(l^{+}+l^{-}\right)^{2}
$$

QCD improved Parton Model

$$
\begin{gathered}
P_{1}+P_{2} \rightarrow l^{+} l^{-}+X \quad m_{h}^{2}=\left(l^{+}+l^{-}\right)^{2} \\
2 S d \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=\sum_{a b} f_{a}(\tau) \otimes \quad f_{b}(\tau) \otimes 2 \hat{s} d \hat{\sigma}^{a b}\left(\tau, m_{h}^{2}\right), \quad \tau=\frac{m_{h}^{2}}{S}
\end{gathered}
$$

QCD improved Parton Model

$P_{1}+P_{2} \rightarrow l^{+} l^{-}+X \quad m_{h}^{2}=\left(l^{+}+l^{-}\right)^{2}$
$2 S d \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=\sum_{a b} f_{a}(\tau) \otimes \quad f_{b}(\tau) \otimes 2 \hat{s} d \hat{\sigma}^{a b}\left(\tau, m_{h}^{2}\right), \quad \tau=\frac{m_{h}^{2}}{S}$

QCD improved Parton Model

- $f_{a}(x)$ are parton distribution functions inside the hadron \boldsymbol{P}.
- Non-perturbative in nature and process independent.

QCD improved Parton Model

- $f_{a}(x)$ are parton distribution functions inside the hadron \boldsymbol{P}.
- Non-perturbative in nature and process independent.
- $\hat{\sigma}_{a b}$ are the partonic cross sections.
- Perturbatively calculable.

Factorisation Theorem (Parton Model)

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$
2 S d \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=\sum_{a b} \int_{\tau}^{1} \frac{d x}{x} \Phi_{a b}\left(x, \mu_{F}\right) 2 \hat{s} d \hat{\sigma}^{a b}\left(\frac{\tau}{x}, m_{h}^{2}, \mu_{F}\right)
$$

Factorisation Theorem (Parton Model)

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$
2 S d \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=\sum_{a b} \int_{\tau}^{1} \frac{d x}{x} \Phi_{a b}\left(x, \mu_{F}\right) 2 \hat{s} d \hat{\sigma}^{a b}\left(\frac{\tau}{x}, m_{h}^{2}, \mu_{F}\right)
$$

- The perturbatively calculable partonic cross section:

$$
d \hat{\sigma}^{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{4 \pi}\right)^{i} d \hat{\sigma}^{a b,(i)}\left(z, m_{h}^{2}, \mu_{F}, \mu_{R}\right)
$$

Factorisation Theorem (Parton Model)

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$
2 S d \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=\sum_{a b} \int_{\tau}^{1} \frac{d x}{x} \Phi_{a b}\left(x, \mu_{F}\right) 2 \hat{s} d \hat{\sigma}^{a b}\left(\frac{\tau}{x}, m_{h}^{2}, \mu_{F}\right)
$$

- The perturbatively calculable partonic cross section:

$$
d \hat{\sigma}^{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{4 \pi}\right)^{i} d \hat{\sigma}^{a b,(i)}\left(z, m_{h}^{2}, \mu_{F}, \mu_{R}\right)
$$

- The non-perturbative flux:

$$
\Phi_{a b}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}\left(z, \mu_{F}\right) f_{b}\left(\frac{x}{z}, \mu_{F}\right)
$$

Factorisation Theorem (Parton Model)

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$
2 S d \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=\sum_{a b} \int_{\tau}^{1} \frac{d x}{x} \Phi_{a b}\left(x, \mu_{F}\right) 2 \hat{s} d \hat{\sigma}^{a b}\left(\frac{\tau}{x}, m_{h}^{2}, \mu_{F}\right)
$$

- The perturbatively calculable partonic cross section:

$$
d \hat{\sigma}^{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{4 \pi}\right)^{i} d \hat{\sigma}^{a b,(i)}\left(z, m_{h}^{2}, \mu_{F}, \mu_{R}\right)
$$

- The non-perturbative flux:

$$
\Phi_{a b}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}\left(z, \mu_{F}\right) f_{b}\left(\frac{x}{z}, \mu_{F}\right)
$$

- $f_{a}^{P_{1}}\left(x, \mu_{F}\right)$ are Parton distribution functions with momentum fraction x.

Factorisation Theorem (Parton Model)

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$
2 S d \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=\sum_{a b} \int_{\tau}^{1} \frac{d x}{x} \Phi_{a b}\left(x, \mu_{F}\right) 2 \hat{s} d \hat{\sigma}^{a b}\left(\frac{\tau}{x}, m_{h}^{2}, \mu_{F}\right)
$$

- The perturbatively calculable partonic cross section:

$$
d \hat{\sigma}^{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{4 \pi}\right)^{i} d \hat{\sigma}^{a b,(i)}\left(z, m_{h}^{2}, \mu_{F}, \mu_{R}\right)
$$

- The non-perturbative flux:

$$
\Phi_{a b}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}\left(z, \mu_{F}\right) f_{b}\left(\frac{x}{z}, \mu_{F}\right)
$$

- $f_{a}^{P_{1}}\left(x, \mu_{F}\right)$ are Parton distribution functions with momentum fraction x.
- μ_{R} is the Renormalisation scale and μ_{F}, Factorisation scale

Factorisation Theorem (Parton Model)

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$
2 S d \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=\sum_{a b} \int_{\tau}^{1} \frac{d x}{x} \Phi_{a b}\left(x, \mu_{F}\right) 2 \hat{s} d \hat{\sigma}^{a b}\left(\frac{\tau}{x}, m_{h}^{2}, \mu_{F}\right)
$$

- The perturbatively calculable partonic cross section:

$$
d \hat{\sigma}^{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{4 \pi}\right)^{i} d \hat{\sigma}^{a b,(i)}\left(z, m_{h}^{2}, \mu_{F}, \mu_{R}\right)
$$

- The non-perturbative flux:

$$
\Phi_{a b}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}\left(z, \mu_{F}\right) f_{b}\left(\frac{x}{z}, \mu_{F}\right)
$$

- $f_{a}^{P_{1}}\left(x, \mu_{F}\right)$ are Parton distribution functions with momentum fraction x.
- μ_{R} is the Renormalisation scale and μ_{F}, Factorisation scale
- The Renormalisation group invariance:

$$
\frac{d}{d \mu} \sigma^{P_{1} P_{2}}\left(\tau, m_{h}^{2}\right)=0, \quad \mu=\mu_{F}, \mu_{R}
$$

```
Altarelli-Parisi/Renormalisation Group Equations
```


Altarelli-Parisi/Renormalisation Group Equations

Renormalised parton density:

$$
f_{a}\left(z, \mu_{F}\right)=\Gamma_{a b}\left(z, \mu_{F}, \frac{1}{\varepsilon_{\mathrm{IR}}}\right) \otimes f_{a}^{B}(z)
$$

Altarelli-Parisi/Renormalisation Group Equations

Renormalised parton density:

$$
f_{a}\left(z, \mu_{F}\right)=\Gamma_{a b}\left(z, \mu_{F}, \frac{1}{\varepsilon_{\mathrm{IR}}}\right) \otimes f_{a}^{B}(z)
$$

Altarelli-Parisi Evolution equation:

$$
\mu_{F} \frac{d}{d \mu_{F}} f_{a}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} P_{a b}\left(z, \mu_{F}\right) f_{b}\left(\frac{x}{z}, \mu_{F}\right), \quad P \equiv \Gamma^{-1}\left(\mu_{F} \frac{d}{d \mu_{F}}\right) \Gamma
$$

Altarelli-Parisi/Renormalisation Group Equations

Renormalised parton density:

$$
f_{a}\left(z, \mu_{F}\right)=\Gamma_{a b}\left(z, \mu_{F}, \frac{1}{\varepsilon_{\mathrm{IR}}}\right) \otimes f_{a}^{B}(z)
$$

Altarelli-Parisi Evolution equation:

$$
\mu_{F} \frac{d}{d \mu_{F}} f_{a}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} P_{a b}\left(z, \mu_{F}\right) f_{b}\left(\frac{x}{z}, \mu_{F}\right), \quad P \equiv \Gamma^{-1}\left(\mu_{F} \frac{d}{d \mu_{F}}\right) \Gamma
$$

Perturbatively Calculable:

$$
\begin{array}{rlr}
P_{a b}\left(z, \mu_{F}\right)= & \left(\frac{\alpha_{s}\left(\mu_{F}\right)}{4 \pi}\right) P_{a b}^{(0)}(z) & \text { one loop (LO) } \\
& +\left(\frac{\alpha_{s}\left(\mu_{F}\right)}{4 \pi}\right)^{2} P_{a b}^{(1)}(z) & \text { two loop (NLO) } \\
& +\left(\frac{\alpha_{s}\left(\mu_{F}\right)}{4 \pi}\right)^{3} P_{a b}^{(2)}(z) & \text { three loop }(N N L O)
\end{array}
$$

LO was computed by "Gross,Wilczek and Politzer"(Nobel prize paper also see "Altarelli and Parisi") and NNLO is computed recently (summer 2004) by "Moch,Vermaseren and Vogt"

UV Scale dependence of partonic cross section

- Collinear finite partonic cross sections are calculable in perturbative QCD in powers of $\boldsymbol{\alpha}_{s}^{B}$, bare strong coupling constant.

$$
d \hat{\sigma}_{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}^{B}}{4 \pi}\right)^{i} d \hat{\sigma}_{a b}^{B,(i)}\left(z, m_{h}^{2}, \mu_{F}, \frac{1}{\varepsilon_{U V}}\right)
$$

UV singularities are regularised in dimensional regularisation $n=4+\varepsilon_{U V}$

UV Scale dependence of partonic cross section

- Collinear finite partonic cross sections are calculable in perturbative QCD in powers of α_{s}^{B}, bare strong coupling constant.

$$
d \hat{\sigma}_{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}^{B}}{4 \pi}\right)^{i} d \hat{\sigma}_{a b}^{B,(i)}\left(z, m_{h}^{2}, \mu_{F}, \frac{1}{\varepsilon_{U V}}\right)
$$

UV singularities are regularised in dimensional regularisation $n=4+\varepsilon_{U V}$

- Ultraviolet divergences are removed by renormalisation in $\overline{M S}$, at the Renormalisation scale μ_{R}

UV Scale dependence of partonic cross section

- Collinear finite partonic cross sections are calculable in perturbative QCD in powers of α_{s}^{B}, bare strong coupling constant.

$$
d \hat{\sigma}_{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}^{B}}{4 \pi}\right)^{i} d \hat{\sigma}_{a b}^{B,(i)}\left(z, m_{h}^{2}, \mu_{F}, \frac{1}{\varepsilon_{U V}}\right)
$$

UV singularities are regularised in dimensional regularisation $n=4+\varepsilon_{U V}$

- Ultraviolet divergences are removed by renormalisation in $\overline{M S}$, at the Renormalisation scale μ_{R}
- UV Renormalised partonic cross section:

$$
d \hat{\sigma}_{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{4 \pi}\right)^{i} d \hat{\sigma}_{a b}^{(i)}\left(z, m_{h}^{2}, \mu_{F}, \mu_{R}\right)
$$

UV Scale dependence of partonic cross section

- Collinear finite partonic cross sections are calculable in perturbative QCD in powers of α_{s}^{B}, bare strong coupling constant.

$$
d \hat{\sigma}_{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}^{B}}{4 \pi}\right)^{i} d \hat{\sigma}_{a b}^{B,(i)}\left(z, m_{h}^{2}, \mu_{F}, \frac{1}{\varepsilon_{U V}}\right)
$$

UV singularities are regularised in dimensional regularisation $n=4+\varepsilon_{U V}$

- Ultraviolet divergences are removed by renormalisation in $\overline{M S}$, at the Renormalisation scale μ_{R}
- UV Renormalised partonic cross section:

$$
d \hat{\sigma}_{a b}\left(z, m_{h}^{2}, \mu_{F}\right)=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu_{R}\right)}{4 \pi}\right)^{i} d \hat{\sigma}_{a b}^{(i)}\left(z, m_{h}^{2}, \mu_{F}, \mu_{R}\right)
$$

- Soft divergences disappear thanks to KLM theorem

Summary of Theoretical Uncertainties

- Factorisation scale due to light quarks and massless gluon

$$
f_{a}(x) \rightarrow f_{a}\left(x, \mu_{F}\right) \quad a=q, \bar{q}, g
$$

Summary of Theoretical Uncertainties

- Factorisation scale due to light quarks and massless gluon

$$
f_{a}(x) \rightarrow f_{a}\left(x, \mu_{F}\right) \quad a=q, \bar{q}, g
$$

- Renormalisation scale due to UV divergences

$$
\alpha_{s} \rightarrow \alpha_{s}\left(\mu_{R}\right)
$$

Summary of Theoretical Uncertainties

- Factorisation scale due to light quarks and massless gluon

$$
f_{a}(x) \rightarrow f_{a}\left(x, \mu_{F}\right) \quad a=q, \bar{q}, g
$$

- Renormalisation scale due to UV divergences

$$
\alpha_{s} \rightarrow \alpha_{s}\left(\mu_{R}\right)
$$

- Parton Distribution Functions extracted from experiments

Summary of Theoretical Uncertainties

- Factorisation scale due to light quarks and massless gluon

$$
f_{a}(x) \rightarrow f_{a}\left(x, \mu_{F}\right) \quad a=q, \bar{q}, g
$$

- Renormalisation scale due to UV divergences

$$
\alpha_{s} \rightarrow \alpha_{s}\left(\mu_{R}\right)
$$

- Parton Distribution Functions extracted from experiments
- Stability of perturbative result and missing higher order contributions.

Summary of Theoretical Uncertainties

- Factorisation scale due to light quarks and massless gluon

$$
f_{a}(x) \rightarrow f_{a}\left(x, \mu_{F}\right) \quad a=q, \bar{q}, g
$$

- Renormalisation scale due to UV divergences

$$
\alpha_{s} \rightarrow \alpha_{s}\left(\mu_{R}\right)
$$

- Parton Distribution Functions extracted from experiments
- Stability of perturbative result and missing higher order contributions.
- Any "Fixed order" perturbative result is bound to depend on μ_{R} and μ_{F}

Summary of Theoretical Uncertainties

- Factorisation scale due to light quarks and massless gluon

$$
f_{a}(x) \rightarrow f_{a}\left(x, \mu_{F}\right) \quad a=q, \bar{q}, g
$$

- Renormalisation scale due to UV divergences

$$
\alpha_{s} \rightarrow \alpha_{s}\left(\mu_{R}\right)
$$

- Parton Distribution Functions extracted from experiments
- Stability of perturbative result and missing higher order contributions.
- Any "Fixed order" perturbative result is bound to depend on μ_{R} and μ_{F}
- Observables are "free" of μ_{R} and μ_{F}.

$$
\mu \frac{d}{d \mu} \sigma^{P_{1} P_{2}}=0, \quad \mu=\mu_{F}, \mu_{R}
$$

Scale Variation of Flux at LHC

$$
\begin{gathered}
\Phi_{a b}^{I}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}^{I}\left(z, \mu_{F}\right) \quad f_{b}^{I}\left(\frac{x}{z}, \mu_{F}\right) \quad I=L O, N L O \\
\mu_{0}=700 \mathrm{GeV}, x=\frac{Q}{\sqrt{S}}, Q=700 \mathrm{GeV} \sqrt{S}=14 \mathrm{TeV}
\end{gathered}
$$

Scale Variation of Flux at LHC

$$
\begin{gathered}
\Phi_{a b}^{I}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}^{I}\left(z, \mu_{F}\right) \quad f_{b}^{I}\left(\frac{x}{z}, \mu_{F}\right) \quad I=L O, N L O \\
\mu_{0}=700 \mathrm{GeV}, x=\frac{Q}{\sqrt{S}}, Q=700 \mathrm{GeV} \sqrt{S}=14 T e V
\end{gathered}
$$

Scale Variation of Flux at LHC

$\Phi_{a b}^{I}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}^{I}\left(z, \mu_{F}\right) \quad f_{b}^{I}\left(\frac{x}{z}, \mu_{F}\right) \quad I=L O, N L O$

$$
\mu_{0}=700 \mathrm{GeV}, x=\frac{Q}{\sqrt{S}}, Q=700 \mathrm{GeV} \sqrt{S}=14 \mathrm{TeV}
$$

Scale Variation of Flux at Tevatron

$$
\begin{gathered}
\Phi_{a b}^{I}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}^{I}\left(z, \mu_{F}\right) \quad f_{b}^{I}\left(\frac{x}{z}, \mu_{F}\right) \quad I=L O, N L O \\
\mu_{0}=700 \mathrm{GeV}, x=\frac{Q_{0}}{\sqrt{S}}, Q=700 \mathrm{GeV} \quad(\sqrt{S}=1.96 \mathrm{TeV}
\end{gathered}
$$

Scale Variation of Flux at Tevatron

$$
\begin{gathered}
\Phi_{a b}^{I}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}^{I}\left(z, \mu_{F}\right) \quad f_{b}^{I}\left(\frac{x}{z}, \mu_{F}\right) \quad I=L O, N L O \\
\mu_{0}=700 \mathrm{GeV}, x=\frac{Q_{0}}{\sqrt{S}}, Q=700 \mathrm{GeV} \quad(\sqrt{S}=1.96 \mathrm{TeV}
\end{gathered}
$$

Scale Variation of Flux at Tevatron

$$
\begin{gathered}
\Phi_{a b}^{I}\left(x, \mu_{F}\right)=\int_{x}^{1} \frac{d z}{z} f_{a}^{I}\left(z, \mu_{F}\right) \quad f_{b}^{I}\left(\frac{x}{z}, \mu_{F}\right) \quad I=L O, N L O \\
\mu_{0}=700 \mathrm{GeV}, x=\frac{Q_{0}}{\sqrt{S}}, Q=700 \mathrm{GeV} \quad(\sqrt{S}=1.96 \mathrm{TeV}
\end{gathered}
$$

\square

We are in Business!

We are in Business!

- Compute Next to leading order NLO QCD corrections to LO prcesses

We are in Business!

- Compute Next to leading order NLO QCD corrections to LO prcesses

$$
d \hat{\sigma}_{a b}\left(\hat{s}, Q^{2}, \mu_{F}^{2}\right)=d \hat{\sigma}_{a b}^{(0)}\left(\hat{s}, Q^{2}, \mu_{F}^{2}\right)\left[1+\frac{\alpha_{s}\left(\mu_{R}^{2}\right)}{4 \pi} \Delta_{a b}^{(1)}\left(\hat{s}, Q^{2}, \mu_{F}^{2}, \mu_{R}^{2}\right)\right]
$$

QCD corrections are larger than other EW and gravity corrections.

Standard Model	Gravity
$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \gamma / \boldsymbol{Z}$	$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \boldsymbol{G}$
	$\boldsymbol{g}+\boldsymbol{g} \rightarrow \boldsymbol{G}$
real emission	real emission
one-loop	one-loop

We are in Business!

- Compute Next to leading order NLO QCD corrections to LO prcesses

$$
d \hat{\sigma}_{a b}\left(\hat{s}, Q^{2}, \mu_{F}^{2}\right)=d \hat{\sigma}_{a b}^{(0)}\left(\hat{s}, Q^{2}, \mu_{F}^{2}\right)\left[1+\frac{\alpha_{s}\left(\mu_{R}^{2}\right)}{4 \pi} \Delta_{a b}^{(1)}\left(\hat{s}, Q^{2}, \mu_{F}^{2}, \mu_{R}^{2}\right)\right]
$$

QCD corrections are larger than other EW and gravity corrections.

Standard Model	Gravity
$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \gamma / \boldsymbol{Z}$	$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \boldsymbol{G}$
	$\boldsymbol{g}+\boldsymbol{g} \rightarrow \boldsymbol{G}$
real emission	real emission
one-loop	one-loop

- Energy momentum tensor is renormalised.

We are in Business!

- Compute Next to leading order NLO QCD corrections to LO prcesses

$$
d \hat{\sigma}_{a b}\left(\hat{s}, Q^{2}, \mu_{F}^{2}\right)=d \hat{\sigma}_{a b}^{(0)}\left(\hat{s}, Q^{2}, \mu_{F}^{2}\right)\left[1+\frac{\alpha_{s}\left(\mu_{R}^{2}\right)}{4 \pi} \Delta_{a b}^{(1)}\left(\hat{s}, Q^{2}, \mu_{F}^{2}, \mu_{R}^{2}\right)\right]
$$

QCD corrections are larger than other EW and gravity corrections.

Standard Model	Gravity
$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \gamma / \boldsymbol{Z}$	$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \boldsymbol{G}$
	$\boldsymbol{g}+\boldsymbol{g} \rightarrow \boldsymbol{G}$
real emission	real emission
one-loop	one-loop

- Energy momentum tensor is renormalised.
- All the soft and collinear divergences are regulated in dimensional regularisation $n=4+\varepsilon$.

We are in Business!

- Compute Next to leading order NLO QCD corrections to LO prcesses

$$
d \hat{\sigma}_{a b}\left(\hat{s}, Q^{2}, \mu_{F}^{2}\right)=d \hat{\sigma}_{a b}^{(0)}\left(\hat{s}, Q^{2}, \mu_{F}^{2}\right)\left[1+\frac{\alpha_{s}\left(\mu_{R}^{2}\right)}{4 \pi} \Delta_{a b}^{(1)}\left(\hat{s}, Q^{2}, \mu_{F}^{2}, \mu_{R}^{2}\right)\right]
$$

QCD corrections are larger than other EW and gravity corrections.

Standard Model	Gravity
$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \gamma / \boldsymbol{Z}$	$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \boldsymbol{G}$
	$\boldsymbol{g}+\boldsymbol{g} \rightarrow \boldsymbol{G}$
real emission	real emission
one-loop	one-loop

- Energy momentum tensor is renormalised.
- All the soft and collinear divergences are regulated in dimensional regularisation $n=4+\varepsilon$.
- Collinear mass factorisation is done in $\overline{M S}$ scheme.

Virtual Corrections, $q \bar{q} \rightarrow G$

$$
\bar{\Delta}_{q \bar{q}}^{G}=\Delta_{q \bar{q}}^{(0) G}+a_{s} \frac{2}{\varepsilon} \Gamma_{q q}^{(1)} \otimes \Delta_{q \bar{q}}^{(0) G}+a_{s} \Delta_{q \bar{q}}^{(1) G}
$$

$\boldsymbol{q}+\overline{\boldsymbol{q}} \rightarrow \boldsymbol{G}$ (1 loop):

Real emission, $q \bar{q} \rightarrow g G$

$$
\bar{\Delta}_{g g}^{G}=\Delta_{g g}^{(0) G}+a_{s} \frac{2}{\varepsilon} \Gamma_{g g}^{(1)} \otimes \Delta_{g g}^{(0) G}+a_{s} \Delta_{g g}^{(1) G}
$$

$\boldsymbol{g}+\boldsymbol{g} \rightarrow \boldsymbol{G}$ (1 loop):

Real emission, $g g \rightarrow g G$

Real emissions, $q \bar{g} \rightarrow q G$

$$
\bar{\Delta}_{q g}^{G}=a_{s} \frac{1}{\varepsilon}\left(\Gamma_{q g}^{(1)} \otimes \Delta_{q \bar{q}}^{(0) G}+\Gamma_{g q}^{(1)} \otimes \Delta_{g g}^{(0) G}\right)+a_{s} \Delta_{q g}^{(1) G}
$$

Real emission, $\boldsymbol{q} \boldsymbol{g} \longrightarrow \boldsymbol{q} \boldsymbol{G}$

Invariant lepton pair mass Q distributions:

$$
\frac{d \sigma^{I}(Q)}{d Q}
$$

Invariant lepton pair mass Q distributions:

$$
\frac{d \sigma^{I}(Q)}{d Q}
$$

Invariant lepton pair mass Q distributions:

$$
\frac{d \sigma^{I}(Q)}{d Q}
$$

- LHC: SM dominates for $Q<600 \mathrm{GeV}$ but for $Q>\mathbf{6 0 0} \mathrm{GeV}$ the gravity mediated processes dominates
- TEV: for $Q>700 \mathrm{GeV}$ the gravity mediated process becomes larger

Contributions at LHC

- SM the $q \bar{q}$ subprocess dominates (no gluon initiated process)
- Gravity mediated process $\boldsymbol{g g}$ sub process initiated process dominates and substantially contributes to the cross section at large Q^{2}

K-Factor

$$
\begin{aligned}
& K^{(S M+G R)}(Q)=\frac{K^{S M}+K^{G R} G^{(0)}}{1+G^{(0)}} \\
& G^{(0)}(Q)=\left[\frac{d \sigma_{L O}^{S M}(Q)}{d Q}\right]^{-1}\left[\frac{d \sigma_{L O}^{G R}(Q)}{d Q}\right]
\end{aligned}
$$

- $G^{(0)}(Q)$ behavior is governed by a competing 'couplings' and PDF flux at LHC and TEV
- At high Q when Gravity contribution becomes comparable to SM, the PDF flux dictates the proceedings

$$
K^{I}=\left[\frac{d \sigma_{L O}^{I}(Q)}{d Q}\right]^{-1}\left[\frac{d \sigma_{N L O}^{I}(Q)}{d Q}\right]
$$

K-Factor:

$$
K^{I}=\left[\frac{d \sigma_{L O}^{I}(Q)}{d Q}\right]^{-1}\left[\frac{d \sigma_{N L O}^{I}(Q)}{d Q}\right]
$$

K-Factor:

$$
K^{I}=\left[\frac{d \sigma_{L O}^{I}(Q)}{d Q}\right]^{-1}\left[\frac{d \sigma_{N L O}^{I}(Q)}{d Q}\right]
$$

- LHC: $K^{S M}$ is moderate for all values of Q while $K^{G R}$ is much larger then $K^{S M}$ at large $Q . Q>700 \mathrm{GeV}, \boldsymbol{K}^{G R}$ dominates the $\boldsymbol{K}^{S M+G R} . \boldsymbol{g} \boldsymbol{g}$ sub process contribute at LO itself via Gravity. NLO large effects due to small \boldsymbol{x} terms in $\Delta_{g g}^{(1) G}$
- TEV: $\boldsymbol{K}^{S M}$ and $\boldsymbol{K}^{S M+G R}$ are not very different

R-Factor:

$$
\begin{gathered}
R_{L O, N L O}^{I}=\left.\left[\frac{d \sigma_{L O, N L O}^{I}\left(Q, \mu=\mu_{0}\right)}{d Q}\right]^{-1}\left[\frac{d \sigma_{L O, N L O}^{I}(Q, \mu)}{d Q}\right]\right|_{Q=Q_{0}} \\
\mu_{0}=Q \quad Q_{0}=700 \mathrm{GeV}(\mathrm{LHC}) \quad Q_{0}=400 \mathrm{GeV}(\mathrm{TEV})
\end{gathered}
$$

R-Factor:

$$
\begin{gathered}
R_{L O, N L O}^{I}=\left.\left[\frac{d \sigma_{L O, N L O}^{I}\left(Q, \mu=\mu_{0}\right)}{d Q}\right]^{-1}\left[\frac{d \sigma_{L O, N L O}^{I}(Q, \mu)}{d Q}\right]\right|_{Q=Q_{0}} \\
\mu_{0}=Q \quad Q_{0}=700 \mathrm{GeV}(\mathrm{LHC}) \quad Q_{0}=400 \mathrm{GeV}(\mathrm{TEV})
\end{gathered}
$$

R-Factor:

$$
\begin{array}{r}
R_{L O, N L O}^{I}=\left.\left[\frac{d \sigma_{L O, N L O}^{I}\left(Q, \mu=\mu_{0}\right)}{d Q}\right]^{-1}\left[\frac{d \sigma_{L O, N L O}^{I}(Q, \mu)}{d Q}\right]\right|_{Q=Q_{0}} \\
\mu_{0}=Q \quad Q_{0}=700 \mathrm{GeV}(\mathrm{LHC}) \quad Q_{0}=400 \mathrm{GeV}(\mathrm{TEV})
\end{array}
$$

- Scale variation appreciably reduces in going from LO to NLO
- Inclusion of SM to GR also reduces scale variation

RS Scenario Results

$$
\begin{aligned}
\mathcal{D}\left(Q^{2}\right) & =\sum_{n=1}^{\infty} \frac{1}{Q^{2}-M_{n}^{2}+i M_{n} \Gamma_{n}} \equiv \frac{\lambda}{m_{0}^{2}} \\
\frac{c_{0}^{2}}{m_{0}^{2}} \mathcal{D}\left(Q^{2}\right) & =\frac{c_{0}^{2}}{m_{0}^{4}} \lambda
\end{aligned}
$$

RS Scenario Results

$$
\begin{aligned}
\mathcal{D}\left(Q^{2}\right) & =\sum_{n=1}^{\infty} \frac{1}{Q^{2}-M_{n}^{2}+i M_{n} \Gamma_{n}} \equiv \frac{\lambda}{m_{0}^{2}} \\
\frac{c_{0}^{2}}{m_{0}^{2}} \mathcal{D}\left(Q^{2}\right) & =\frac{c_{0}^{2}}{m_{0}^{4}} \lambda
\end{aligned}
$$

- Away from the resonance region gravity contribution is negligible
- K-Factor behavior can be understood from the $\boldsymbol{K}^{(0)}$ behavior for the RS model.
\square

R-Factor:

- Scale variation reduced considerably in going from $\mathrm{LO} \rightarrow \mathrm{NLO}$
- Inclusion of SM to GR also reduces scale variation

Summary

- Next to Leading Order coefficient functions for DY process in models of TeV-scale gravity are available now.
- Various distributions viz. $\boldsymbol{Q}, \boldsymbol{x}_{\boldsymbol{F}}, \boldsymbol{Y}$ distributions and $\boldsymbol{A}_{\boldsymbol{F} \boldsymbol{B}}$ asymmetry at NLO are studied for ADD \& RS models.
- Theoretical uncertainties get significantly reduced at NLO level
- Quantitative impact of the QCD corrections for searches of extra dimension at hadron colliders investigated

