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_HC will start operating in two years!

High statistics of W and Z bosons (millions) will
provide opportunity for precise measurements

* My — 15 MeV (now 34 MeV)
» anomalous V-boson couplings — 10~ (now
1072)
Parton luminosities will be measured with 1%
precision
Are the Monte Carlo tools ready?
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Desired specifications of MC tools for LHC

Observable/proc  EW QED QCD MC type

My IW,Z Impr. Born  O(a)exp FSR!  pdf(x,pT), NLO? events!

Anom coupl/VV  O(«) O(a) NLO! NNLO? events!

sin? O gy /Z Ola,a%,y) O(a)exp FSR!  NLO events!

Parton £L/W,Z O(a) O()exp FSR?  NLO! NNLO? events?
| = mandatory,

? = to be checked...

None of the existing TOOLS fulfills this specs
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Existing EW+QCD tools for pp —V and , V=W,Z

Tool Process EW QCD MC type
WGRAD W O(a) pdf(x),LO histogrs.
ZGRAD2 Z O(a) pdf(x),LO histogrs.
WINHAC W QED FSR O(a) oy pdf(x),LO events
HORACE W/Z QED FSR part.sh. pdf(x),LO events
SANC W,Z O(a) 277 events?
RESBOS W, Z LO pdf(x,pT),NLO histogrs.
DYRAD V+(0j-1j) LO pdf(x),NLO histogrs.
MCFM \V4 LO pdf(x),NLO histogrs.
DKS LO, Anom.Coup. pdf(x),NLO histogrs.
dFS LO, Anom.Coup. pdf(x),NLO histogrs.
MCQNLO LO part.sh. NLO events
MC@QNLO WorZ LO part.sh. NLO events
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Vocabulary

The algorithm in which the number of emissions (determining the
dimension of the phase-space integral), is generated as variable

The algorithm in which the number of emissions (the dimension of the
Integral), is generated as one of variables.

Distributions the same as in normal Markovian evolution, but final
energy = = [ ] z; and parton type are l.e. constrained.

Two ingredients: as(Q(1 — z)) (Amati, Basetto, Ciafaloni,
Marchesini, Veneziano, NPB173, 1980) and ¢,,, = Qo/Q where
Qo ~ 1GeV (Webber, Marchesini, NPB310, 1988).

— at the LL they

differ by large NLL and Q¢ /@) terms.
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R&D on M C solutions of QCD Evolution in Cracow

® Markovian MC (forward) precision (~ 10~°) solutions of the full LL
DGLAP equations (massless quarks). Acta.Phys.Pol. B35 (2004).

® Markovian MC precision solutions of the full NLL DGLAP equations
(massless quarks). IFJPAN-V-04-08, to appear.

® Markovian MC study of the CCFM one-loop evolution.
IFJPAN-V-05-03, to appear

® Constrained MC (non-Markovian) class Il. Proc. Loopsé&Legs 2004,
Nucl. Phys. Proc. Suppl. 135 (2004) and IFJPAN-V-04-06,
hep-ph/0504205.

® Constrained MC (non-Markovian) class I.
IFJPAN-V-04-07, hep-ph/0504263.
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Markovian MC implementing the QCD/QED evolution equations
IS basic ingredient in all parton shower type MCs

Unconstrained Markovian, with evolution kernels from
perturbative QCD/QED, can only be used for FSR (inefficient for
ISR)

For ISR the Backward Markovian of Sjostrand (Phys.Lett. 157B,
1985) is a widely adopted remedy.

Backward Markovian does not solve evolution eqgs. It merely
exploits their solutions coming from the external non-MC
methods
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Evolution Equation

Differential equation — integral equation:
t

€ Dk(t,a:) = Dk(to,x)+/dt16 Zﬂbk] tl, tl, )(ZI?)

to

where IR regulator is introduced
Pri(t,z) = —Tik(e(t))ékjd(l —z)+ iPkJ (t,2)O(1 — z —¢)

and the Sudakov formfactor appears

- / at' P, (e(t'))
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Master equation for Markovian solution

xDK(’r,a:): / dTldzlZ(D(Tl,xl,KﬂTo,CUo,K) CL’DK(T(),SL’)

T1 >t S
0o 1
—|—Z /d:L‘o / AdTp11d2n11 Z Z H / dridz;
n=1 0 Tn4+1>T Kn+1 Boml Sy
X W(Tnt1, Tnt1, Knt1|Tn, Tn, Kn) —

n
X H(D(Ti,xi,Ki‘Ti—lyxz’—laKz’—l) N
1=1
n

x §(z — zg H 2i) oDk, (70, Zo) =
i=1
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Tests of Markovian sol.: Proton — quarks

Upper plot shows quark

singlet distribution
rDg(x,Q;) evolved
from @ = 1GeV to
Q; = 10,100,100GeV

obtained from QCDnuni6
and Evol MC1, while lower
plot shows their ratio.

IS complete proton at
Q) = 1GeV.

5 The horizontal axis is
Q

§ logyo().

S Starting distribution
:
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Constrained Solutionsclass| and ||

HADRON HARD PROCESS

D(X,) H(sxx’)
(or lepton)

Solutions class |

Solutions class | |

[dz H(s )fl;[‘i—zP(zZ) D( ) O(]] 2z — x)
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Solution 11B

Must generate P(z;) = QCA(Z%. ]

1—2z;

with the constraint | [, z; > z. Not so trivial!
Solution by the multibranching method:
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Multibranchingin I1B

Each sum

%IQIQQIIQIIQ

Can be rearranged.

> i we e fdd-d-da

o(Mz—X) —>MNo(z —X) Integrable

yARRQ)

Contributions1/z and 1/(1 — z) are combined and
resummed separately.
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kr-dependent PDFs

Use the CCFM equation in “1-loop approximation”

f(z,Q¢,q0) = folz, Q)

qo

+/ d2qa52(7T )/%Zp() (§,|C§t+(1—z)‘ﬂ’q>

R z
dmin Zr
1 n
= fo(e. Q) + Y / dz09(z — ][ =)
n=1 1=0
n & d2 1
Qz OéS q
: d 7 7 ( y 1_ 7 )
X[l_[l/ 2 / 22 P(2;) | fo| 20 |Qt‘|‘z Z)
= dmin 0

Integrated over d?Q; this equation turns into ordinary DGLAP with
zD(x,q0) = [ d*Quf (z,Q, q0)
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kr-dependent PDFs
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 Effi ciency (ratio of accepted to rejected events)
of the order of 10~% — would like higher!

» \We have constructed another class of solutions —
of thetypel
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consider L = [1d5 /k:0(k; — k1)
Introduce 1 = A <1
shift all variables &, = k; /

L= 7(9(]6/ i— 1)

— Hﬁe(k/ i— 1)7
K
> ki

L. Van Hove, NPB9 (1969), S. Jadach CPC9 (1975)

Ao =
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Pure bremsstrahlung from & = G, ¢, g line

Iterative solution of the QCD evolution egs from ¢y — ¢,(t = In Q)):

2Dy (t, to; 2) = e~ Frbi0) {5x_1+

0 1 n t 1 o
+ Zl ﬁ ,1_[1/,50 dti /0 de ?kk(ti,zi) 533:1—[?:1 Zi}’

® 0y>0 = 1forz > yand = 0 otherwise; 0y—, =d(z —y).
o Pri(t,2) = 22 Py () = —P8, (£)8.21 + P (4, 2).
* PO.(t,2) = Pri(t, 2)01_>c(1), the same as in LL DGLAP.
1—e(t)
e PO (t)= [ d2PP.(2,t), energy sum rule, valid up to NLL.
0
* Sudakov formfactor: ®(t,t9) = ﬁf) dt' P2, ().

°* IRcute(t) = Qp/Q; itis not anymore << 1, as in DGLAP.
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HERW IG-evolution

1—e(t) ¢ p(In(1—=x)) 1
/ de/dtz ﬂ),?k(tz,zz) — hk / dyi /dSi,’i — 1, 2, ceey T
z to p(to—t 0

)
zi(yi) =1 —exp(p~ ' (%:)); ti(si) = Lo (t i lng — Zi)) z— In(1 — 2)

where
p(v) = (t+v)In(f+v)—v—vinty—tlnt, t=t—ty =InQ—InAg

IMPORTANT: p~1 is not analytical! Inversion has to be done

numerically. p=! will enter the constraint function JT z;!
The above mapping leads to:

p(In(1—z)) 1

aﬂ)kk(ta to, CE) — e_Q)k(t,tO){ Z H / dyi5w=l_l?:1 zi (Yi) /dsz}

p(to—t) 0
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The energy constraint

Using symmetry of the integrand we finally trade the ordering in
evolution time variables ¢; into ordering in the energy variables y;

(yo = 0):
2Dy (t, to, z) = e~ Trlt:b0) {5w:1+

p(In(1—x)) 1

_1Zhn H / dy; 0 i > Ui /dsz}
B to t

0

and we are ready to perform the dilatation trick on //, variables
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Linear shift: 4 — vy, =y, — Y

» Begin with y. such that one of them y,, = y,ax
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Linear shift: 4 — vy, =y, — Y

» Begin with y. such that one of them y,, = y,ax

» Shifty, — y; by Y, where Y solves constraint
condition|[ z; =z
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Linear shift: 4. — vy, =v, — Y(y1,99,-..,9,)

» Begin with y. such that one of them y,, = y,ax

» Shifty, — y; by Y, where Y solves constraint
condition|[ z; =z
» Y istherefore complicated function of all !
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Linear shift: 4. — vy, =v, — Y(y1,99,-..,9,)

» Begin with y; such that one of them y,, = yax

» Shifty, — y; by Y, where Y solves constraint
condition|[[z; =z

» Y istherefore complicated function of all y;

« Sometimes the smallest y; is shifted OUT of the

phase space, below IR the limit v,,;,. Such an
event gets MC weight w = 0
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Master formula for the bremsstrahlung CMC

Dy (T7 70, $) — e(T_TO)ak Z {ebkfR(S)é’n:O(sle + 5n>091—x>sebkm(1_$)
n=0
1 1 n 1 1
P (1 — maxr
X Pnbkal—aj‘ /d’l‘z J/d }
zg(z) (el 1;[1 J J

® Mapping z;(y;) =1 —exp(p~(y;)).
® Mapping £;(s;) = o (£+ln€1—zi))82 — In(1 — z).

to

® Poisson distribution: P,(\) = e *\"/n!, A =<n >.
® R(1—-2) = p(In(1 — 2)), (implicitly depends on ¢ and ).

o MC WElght w# =wp |8yTI‘?(FaE()Y0)| 0 ’ —Y0>Ymin

* where g(z) = |9y In 2(y)| .=, = =2 is to stabilize the MC weight.

® Ordering of y. is here relaxed (to get explicit 1/(n — 1)! of Poisson).
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» The effi ciency of the algorithm is very high —
about 25% !!

 Last point to be adressed — inclusion of the
guark-gluon transitions. Thisis done by means
of hierarchic reorganization, i.e. two-level
organization:

e outer-level: transitionsg —+ g —q — ...
 Inner-level: bremsstrahlung multi-emissions
fromsingleq or g
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Based on well known mathematics of e.g. quantum mechanical

Interaction picture:
If the evolution kernel can be divided into two parts

P(t,z) = +
then the solution of evolution equation obeys
t
D(t) = exp (/ dt') D(ty),
to T
with solving the evolution for the -kernel
O = : =1
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— picture

IS pure bremsstrahlung segment;
1S Q<G trangition.
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Two-level hierarchic— formula( are also multi-integrals!)

Dk(T, CL‘) — /dZ dz Dk(70,$0)5x:2x0+

1

1 n T 1 1
+ Z Z / dZn+1[H / 707, 5r; / dz; / dzj} / da
F1ko 0 =15 0 0

kn;ékn 175 #k1#ko 0
X [HPk koo (24) ]
X Dk'o (T0,$0)5(5L‘ — $02n+1 H ZiZi), k= k‘n,

1=1
e®r(7,70)
Oy
s

—I—ZH/de i >T 1/dzZ 2P (2:)0 47— [ 1zz}

nlzl
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CMC for full DGLAP — top level integrand for

* Neglecting temporarily w# inside the segments Dy, gluon
bremsstrahlung sub-level, we can integrate/sum analytically over all

variables of the sub-level
® The overall (energy) z-constraint J-function is eliminated using [ dz

® \We are left with -dim. integrals (n= No. of flavor changes) of

flavor-changing super-level, the IS:
R(x)

1
Di(r,z) = 2! / dZ / dRy Z(Ry)¥*2e2(T=70) g0 Dy (10, To)+

0
R(x)

+a Z [H/de97j>7’j—1:l /anJFlZ(RnJrl)wk_2€ak(T_Tn)

kp—1---sk1kqg ]:]_
kn#ky_1 77k o 2

n 1 R(zit1/2:)
X [H / dzz Pk k;_1 Z'L) / dR Z(R) i— 1_26aki—1(7-i_7-’i—1)

337,—{—1

X X0 Dko (7'0 s L0 ) 3 Monte Carlo Solutionsof the QCD Evolution Equations — p.27/3:



FOAM 1.02M, integrated with ROOT! S.Jadach & P.Sawicki

® Suppose you want to generate randomly points (vectors)
according to an arbitrary probability distribution in n dimensions.
FOAM can do it for you! Even for distributions with strong
peaks and discontinuous!

* FOAM generates random points with weight one or with variable
weight.

* FOAM is capable to integrate using efficient "adaptive" Monte
Carlo method.

* It creates hyper-rectangular "foam of cells"”, which is more dense
around its peaks. See 2-d example of 1000 cells for doubly
peaked distribution:
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FOAM 1.02M, example of grid
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CMC algorithm of type I, full DGLAP

* Generate super-level variables n, k;, 7; Z; and z; using
general purpose MC tool.

* Limiting no. of flavor transition (G — @ and Q — G) to
n = 0,1, 2,3 is enough, for the ~ 0.2% precision.

* For each pure gluon bremsstralung segment defined by Z and
(73, 7Ti—1), ¢ = 1,2,...,n + 1, gluon emission variable
( (1) ,_(4)

2,7, 7 =1,2,..,n\), are generated using previously

described dedicated CMC.

* Weight= 1 events available!
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Numerical tests

In next slides we show example of numerical results from such a
non-Markovian CMC Evol CMC for “evolution” ranging from
Q=1GeVtoQ = 1TeV, z > 1073,

They are compared with the results of the Markovian
unconstrained evolution of our own Evol FMC

Evol FMC was previously x-checked with QCDnunil6 and
APCHEB

The agreement of Nonmarkovian Evol CMC and Markovian
Evol FMCis excelent, ~ 0.25%.
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Test of non-Markovian Constrained MC: DGLAP

O
=

)

>
L
s
i
T
o

n=0.G—>G

n = 1. ) — G and any no. of gluon emissions out of () and G,
n=2.G— (@ — G,elc. n=3 0 —G—Q — G,elc.
n=4.G—Q — G— @ — G,elc.

“Total” is the sum of n = 0, 1, 2, 3, 4. Evolution from proton at 1GeV to

1TeV. Non-Markovian CMC (EvolCMC) agrees with unconstrained
Markovian MC (EvolFMC) to ~~
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Test of non-Markovian Constrained MC:; HERWIG

i
O
=

S

>
L
W
o
=
T
o

J=0:.0Q — Q

J = 1. G — @ and any no. of gluon emissions out of () and G,
J=2.G—>Q — G— (Q,elc. J=3.G—> @ — G— (Q,elc.
J=4.0Q—G—>Q —>G— (Q,etc.

“Total” is the sum of n = 0, 1, 2, 3, 4. Evolution from proton at ) = 1GeV up
to 1TeV. Non-Markovian CMC agrees with Markovian MC to !
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Summary and outlook

* It Isdemonstrated using prototype program that
the Constrained M C works in practice for the
HERWIG evolution and for standard LL DGLAP
with Quark—Gluon transitions.

« Still to be done soon: Including the rest of NLL
corrections into CMC, mapping into full d = 4
phase space, and more...

» How to exploit this new technology in the
construction of the full scale parton shower MC?
To be seen...

* Most likely application: unifi ed approach with
unintegrated PDFs (CCFM style) and parton
shower MC, up to NLL.
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