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Introduction

� LHC will start operating in two years!

� High statistics of W and Z bosons (millions) will
provide opportunity for precise measurements

� � 15 MeV (now 34 MeV)

� anomalous V-boson couplings

�� � �

(now

�� � �

)

� Parton luminosities will be measured with 1%
precision

� Are the Monte Carlo tools ready?
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Desired specifications of MC tools for LHC

Observable/proc EW QED QCD MC type

��� /W,Z Impr. Born

� ��� �	�
 � FSR! pdf(x,pT), NLO? events!

Anom coupl/VV

� ��� � � �� �

NLO! NNLO? events!

� �� ��� � � /Z

� ����� � ����� ���
� � �� ��
 � FSR! NLO events!

Parton

�

/W,Z

� ��� � � �� ��
 � FSR? NLO! NNLO? events?

! � mandatory,

? � to be checked...

None of the existing TOOLS fulfills this specs
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Existing EW+QCD tools for � � �V and � � �VV, V=W,Z
Tool Process EW QCD MC type

WGRAD W

� ��� �

pdf(x),LO histogrs.

ZGRAD2 Z

� ��� �

pdf(x),LO histogrs.

WINHAC W QED FSR

� �� ��� �� pdf(x),LO events

HORACE W,Z QED FSR part.sh. pdf(x),LO events

SANC W,Z

� �� �

??? events?

RESBOS W, Z LO pdf(x,pT),NLO histogrs.

DYRAD V+(0j-1j) LO pdf(x),NLO histogrs.

MCFM V,VV LO pdf(x),NLO histogrs.

DKS WW, WZ, ZZ LO, Anom.Coup. pdf(x),NLO histogrs.

dFS W �, Z � LO, Anom.Coup. pdf(x),NLO histogrs.

MC

�

NLO WW LO part.sh. NLO events

MC

�

NLO W or Z LO part.sh. NLO events

Required at least

� ��� �

electroweak or NLO QCD, none has both!
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Vocabulary

�

Markovian MC algorithm

The algorithm in which the number of emissions (determining the

dimension of the phase-space integral), is generated as the last variable

�

non-Markovian MC algorithm

The algorithm in which the number of emissions (the dimension of the

integral), is generated as one of the first variables.

�

Constrained MC algorithm = CMC
Distributions the same as in normal Markovian evolution, but final

energy � � ����� and parton type are predefined i.e. constrained.

�

HERWIG Evolution (terminology by P. Nason), 1-loop CCFM :

Two ingredients: � � �� �� � � � �

(Amati, Basetto, Ciafaloni,

Marchesini, Veneziano, NPB173, 1980) and 	�
� � �  ��

where�  � � GeV (Webber, Marchesini, NPB310, 1988).

MS-bar DGLAP evolution

� � HERWIG evolution – at the LL they

differ by large NLL and

�  ��

terms.
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R

�

D on MC solutions of QCD Evolution in Cracow

Monte Carlo modeling of the QCD

� �

DGLAP evolution:

�

Markovian MC (forward) precision ( � � ��� �

) solutions of the full LL

DGLAP equations (massless quarks). Acta.Phys.Pol. B35 (2004).

�

Markovian MC precision solutions of the full NLL DGLAP equations

(massless quarks). IFJPAN-V-04-08, to appear.

�

Markovian MC study of the CCFM one-loop evolution.

IFJPAN-V-05-03, to appear

Constrained Monte Carlo (CMC) algorithms for DGLAP evolution:

�

Constrained MC (non-Markovian) class II. Proc. Loops

�

Legs 2004,

Nucl. Phys. Proc. Suppl. 135 (2004) and IFJPAN-V-04-06,

hep-ph/0504205.

�

Constrained MC (non-Markovian) class I.

IFJPAN-V-04-07, hep-ph/0504263.
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The long standing problem

�

Markovian MC implementing the QCD/QED evolution equations

is basic ingredient in all parton shower type MCs

�

Unconstrained Markovian, with evolution kernels from

perturbative QCD/QED, can only be used for FSR (inefficient for

ISR)

�

For ISR the Backward Markovian of Sjostrand (Phys.Lett. 157B,

1985) is a widely adopted remedy.

�

Backward Markovian does not solve evolution eqs. It merely

exploits their solutions coming from the external non-MC

methods

� Is it possible to invent an efficient MC
algorithm for constrained Markovian based on
internal MC solutions of the evolution eqs?
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Evolution Equation

�
�� ��� � ��� � 	 
 �

�� � � ���  	 � � � � ���  	
Differential equation � � integral equation:

� ��� ���� ��� � � � ���� � � � � � �� � � �! 
�

���
"�$# �� �� ���% � ��� �

&
' (�& ��$# � ) �* � & ���# � ) � � � �

where IR regulator is introduced

' �& ���� � � � � ' + � � �-, �� � �. �& . �� � � �  ' (�& ��� � �/ �� � � � , �

and the Sudakov formfactor appears

0� ��� �  � �
�

� � "� 1 ' + � � �, ��� 1 � �
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Master equation for Markovian solution

�� � ���� � � �
� % � �

"� # "� # �%
��� ��� # � �# � �# 	 � � � � � � �� � ��� � � �

 

��#

#


" � 
�� �% ��

"� ��# "� ��# � �% �� � � � � �%
�

� �#
�

�� ��
"�� "���

� ��� ��� ��# � � ��# � � ��# 	 � �� � �� � �� � ��  � ���� ��

�
�

� �#
��� ���� � �� � �� 	 �� � # � �� � # � �� � # � � � � � � � � � � ��

� .  � � � 
�

� �# ��� ! � � �� � � � �  � ��"$# � "% � & ')( � +* , �
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Tests of Markovian sol.: Proton quarks
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Upper plot shows quark

singlet distribution

�� �
� �� � � �

evolved

from
�  � �

GeV to� � � � �� � � �� � � �

GeV

obtained from QCDnum16

and EvolMC1, while lower

plot shows their ratio.

The horizontal axis is��� * #  � � � .
Starting distribution

is complete proton at� � � GeV.
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Constrained Solutions class I and II

HADRON

H(sxx’)
x

z
1

0

z z
2

x x

z
n

1 2 n... x=x
0D(x  )

HARD PROCESS
x’

(or lepton) 3

��� �

� � �
�

�
��� � � � � �

�	� � � � �



Solutions class I�� �� �

� � �
� � � � 


�
� � � � � � � � � � � � � � � � �

Solutions class II�� � � � 


�
"��

��

� � � � � � 

� � � � � � � � � �
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Solution IIB

x=x n...x 0 x 1 x 2

z2z21z z nGluon

G G

G(1−x  )x
−1.2

G G

0 0
5

0D(x  )

Replace

� ��� � � � � � � � � � 	

� . Compensated by MC weight.

Must generate

� ��� � � � ��� � 	

�

� 	
	�� 
�

�

with the constraint � � � � . Not so trivial!

Solution by the multibranching method:

=

z

+
111

1−z
1

+ 1−z z
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Multibranching in IIB
Each sum

Σ
Can be rearranged:

Integrable

Σ
Z

−> Π Θ

Z

Θ iΠ zi(       −x) (z  − x)

Contributions
�  � and

�  � � � � �

are combined and
resummed separately.
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��� -dependent PDFs

Use the CCFM equation in “1-loop approximation”

� � � � ��� � � � � � � � � � � ��� �

�
	


	�� ��
� ��� �

� � �
�� � � � �

� �
	

�
�


 � �  � � � �

 � �
� ��� � � � �  � � � � � � �

� � � � � � ��� � �
� � 	

	
�

� � � �
� �

�
� � �

�
�

�
�

� � 	
	 �! "

	�� ��
� � � ��

� � ��

�� � � �� �
� �

	
�

�� � � � � � � � �
 � � �

� �#� �
�

� � 	
� � � � � � �� � �

Integrated over
� � ��� this equation turns into ordinary DGLAP with

� � � � � � � � $ % � � � �� � � � � �#� � � � �
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��� -dependent PDFs
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� �#� � � �� � 	 � � � � � � �� , the “CCFM in 1-loop approx.”
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Problem with solution IIB

� Efficiency (ratio of accepted to rejected events)
of the order of

� � � �

– would like higher!

� We have constructed another class of solutions –
of the type I
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Dilatation trick
consider

� � � � � � � � � � �  � � � � � � � � � � �
�

introduce

� � � �� � ��  � ��
�

� �
shift all variables

� �
� � � � �

� � �� � �� � �
� �

� �� � � � � �
�

�

� � �
�

� �
�

� � � �
� � � �
� � �

�

� �� � �� � �
�

� � � � � �
�

�

� � �
�

� �
�

� � � �
� � � �
� � �

�
�

�
� � � �

�
L. Van Hove, NPB9 (1969), S. Jadach CPC9 (1975)
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Pure bremsstrahlung from

� � � � � �� line

Iterative solution of the QCD evolution eqs from

� � � �
,(

� � ��� �

):

� � � � � � � � � � � � � �� 	�
 ��� � 
 � � � � 	 �

�
�

� � 	
�

� �
�

� � 	
�

� 

� ��

	
�

�� � �� � � �� � � � � � � � ��� " 
� �

� � � � � � �

for � �� and � �
otherwise;

� � � � $ � � � �� �

.

� �� � � � �  � $ � ��� 
 � �  �� � � � � � � �  � � � � � � 
 � 	 � � �� � � � �  �

.

� � �� � � � �  � � �� � � � �  � � 	 � 
 �! �� � , the same as in LL DGLAP.

� �  � � � � � �
	 � ! �� �

%
�

� � �� � �  � � �

, energy sum rule, valid up to NLL.

�

Sudakov formfactor:

" � � � � � � � � % �� 
 � � # �  � � � � # �

.

�

IR cut $ � � � � � � � �

; it is not anymore % % �

, as in DGLAP.
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HERWIG-evolution – single step

	�� ! �� �
�

��
�

� 

� �� � �� � � �� � � � � � �

� �� � � 	 � �� �

� �� 
 � � �
�� �

	
�

���� � � � � � � �� � � � �

� �� � � � � � �	 
 ��� � 	 �� � � � � �� � �� � � � �
� � �� � � � � �

� �

� �
� �� � � � � �

where

� ��� � $ � � � � � �� � � � � � � � � � ��� � � � � �� � � � $ � � ��� � �� � � ��� � �

IMPORTANT: � � 	

is not analytical! Inversion has to be done

numerically. � � 	

will enter the constraint function � !
The above mapping leads to:

� � � � ��� � � � � � �� �� �� � �� � . � �#  

��#

� ��
� �

�
� �#

� ���� �# � � � �
� ���� � � �

"��� .
� � �� �% �� �! � �

#


"�"�
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The energy constraint

Using symmetry of the integrand we finally trade the ordering in

evolution time variables

�� into ordering in the energy variables� �

(� � $ �

):

� � � � � � � � � � � � � �� 	
 ��  � 
 � � � � 	 �

� � � 	
�

� � 	
�� �

�
� � 	

� � � � � 	 � �� �

� �� 
 � � �
�� � � � � � � �  " � ��� �

� � �
� �� � �

	
�

� ��

and we are ready to perform the dilatation trick on� � variables
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Linear shift: � �
� � � � � �
� �

y’
i

y’
ny’

1

ymaxmin
y

� Begin with � �
� such that one of them � �

� � � � ��

Shift by , where solves constraint
condition

is therefore complicated function of all

Sometimes the smallest is shifted OUT of the
phase space, below IR the limit . Such an
event gets MC weight
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Linear shift: � �
� � � � � �
� �

y’
i Y y’

ny’
1

ymax
ny1ymin

y iy

� Begin with � �
� such that one of them � �

� � � � ��

� Shift � �
� � � by , where solves constraint

condition � � � �

is therefore complicated function of all

Sometimes the smallest is shifted OUT of the
phase space, below IR the limit . Such an
event gets MC weight
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Linear shift: � �
� � � � � �
� � � � �
� � � �
� �� � � � � �

�
�

y’
i

y’
ny’

1

ymaxymin
yny

i
y1

Y

� Begin with � �
� such that one of them � �

� � � � ��

� Shift � �
� � � by , where solves constraint

condition � � � �

� is therefore complicated function of all � �
�

Sometimes the smallest is shifted OUT of the
phase space, below IR the limit . Such an
event gets MC weight
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Linear shift: � �
� � � � � �
� � � � �
� � � �
� �� � � � � �

�
�

y’
i

y’
ny’

1

ymaxymin

Y

y
1

y
i

yn

OUT!

� Begin with � �
� such that one of them � �

� � � � ��

� Shift � �
� � � by , where solves constraint

condition � � � �

� is therefore complicated function of all � �
�

� Sometimes the smallest � �
� is shifted OUT of the

phase space, below IR the limit � � �� . Such an
event gets MC weight � � �
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Master formula for the bremsstrahlung CMC

� � � � � �� �  � � � � � �� � � � � �� 

�� 

� �� � ��� � . �� . � �#  . �� � # � � � � � �� � �# � � �

� � � � �� � #
�� � � �

	 � � � 
� ��  � �  � � 	 �� ! �
� �#

#


"��� . ��  � �� �& �

�

#


"�"� " �

�

Mapping � � � �� � � �  � � � ��� � # � ��� � �
.

�

Mapping

��� � "� � � ���� �� � ���� �# � �� �
� �� �  �
 ��! �"  #� �

.

�

Poisson distribution:
	 ��$ � � % � & $ �' � �

,

$ � ( � ) .

� � � "  # � * � �+ ! �"  # � �-, (implicitly depends on

.

and

.� ).

�

MC weight: / � � /10 �2 3 � 456 7 ��� 8 39;: 4 5 <
 =?> � 9;: @  A B�C ,

�

where � ��D � � EF  + ! # � � � E
�G � � H � �
� is to stabilize the MC weight.

�

Ordering of � I� is here relaxed (to get explicit

" ' � �  " � �

of Poisson).

Monte Carlo Solutionsof the QCD Evolution Equations – p.22/34



Prototype Monte Carlo

� The efficiency of the algorithm is very high –

about 25% !!

� Last point to be adressed – inclusion of the

quark-gluon transitions. This is done by means

of hierarchic reorganization, i.e. two-level

organization:

� outer-level: transitions � � �
� � �

� inner-level: bremsstrahlung multi-emissions

from single � or �
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Hierarchical reorganization

Based on well known mathematics of e.g. quantum mechanical

interaction picture:

If the evolution kernel can be divided into two parts

� � ��� � � � � � �� � � � 	 ��
 � � �

then the solution of evolution equation obeys

� � 
 � � �� ��
 � 
��
� � � �

�
���

� 	 ��
 � �� 
 �
�

� � 
� �
�

� 	 � 
 � � � �
� � 
 � 
��

� 	 � 
 � �� ��
 � 
��
�

with

�� solving the evolution for the

� ��
 � � � -kernel

� � �� ��
 � 
 �
� � � ��
 � � � 
 � 
 �
�

�

�� � 
 � � 
�
� � !
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Two-level hierarchic evolution – picture
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Red oval is pure bremsstrahlung segment;

Black circle is Q G transition.
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Two-level hierarchic – formula (

��� � are also multi-integrals!)

��� ��� , D � � �	 �D � 
 � � ��� , 	 E � � � ��� ��� � , D � ��� G �� : �

� �
�G H ���� >� � �� � > �:��� ��� ���� > ���� � � ��� � > ��� �:

H
�

�	 �� H
 �

! G H
"

":

�� ! < "# @ "#� >
H

$
� # !

H
$

�	 !
% H

$
�D $

& 
 � � ��� , 	 �� H E � ��
 �

'G H
( )�+* �+* � >
� # ' � 
 �,* � > �,* � > ��� ', 	 ' E � '.- H �

%

& �/�: ��� $, D $� D 0 D $	 �� H
�

'G H
# ' 	 ' , 1 * 1 �,


 � � � � , 	 E � $� 2 % 3 � 3 "54 ": 4

	  �G H

� �
�G H

�
'G H

"
":

�� ' < "* @ "* � >
H

$
� # ' # ' ( )� � � # ' � �G 6�* � > 7*
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CMC for full DGLAP � top level integrand for FOAM

�

Neglecting temporarily / �

inside the segments


 � � , gluon

bremsstrahlung sub-level, we can integrate/sum analytically over all

variables of the sub-level

�

The overall (energy) D -constraint



-function is eliminated using

� �D $

�

We are left with

��� � �

-dim. integrals (� = No. of flavor changes) of

flavor-changing super-level, the INTEGRAND FOR FOAM is:
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FOAM 1.02M, integrated with ROOT! S.Jadach & P.Sawicki

What is FOAM for?

�

Suppose you want to generate randomly points (vectors)

according to an arbitrary probability distribution in n dimensions.

FOAM can do it for you! Even for distributions with strong

peaks and discontinuous!

�

FOAM generates random points with weight one or with variable

weight.

�

FOAM is capable to integrate using efficient "adaptive" Monte

Carlo method.

How does it work?

�

It creates hyper-rectangular "foam of cells", which is more dense

around its peaks. See 2-d example of 1000 cells for doubly

peaked distribution:
Monte Carlo Solutionsof the QCD Evolution Equations – p.28/34



FOAM 1.02M, example of grid
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CMC algorithm of type I, full DGLAP

CMC algorithm description

�

Generate super-level variables �,

��� , �� �� and �� using Foam
general purpose MC tool.

�

Limiting no. of flavor transition (

 � �
and

� � 

) to

� � �
�

!
�

�
�

	

is enough, for the 
 ��� � 
precision.

�

For each pure gluon bremsstralung segment defined by

�� and

� �� � �� � � � ,

� � !
�

�
� � � � � � � !

, gluon emission variable

� �
� � �
� � �

� � �
� � � � !
�

�
� � � � � � � � � , are generated using previously

described dedicated CMC.

�

Weight � !

events available!
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Numerical tests

�

In next slides we show example of numerical results from such a

non-Markovian CMC EvolCMC for “evolution” ranging from

� � !

GeV to

� � !

TeV, � � ! � � �

,

�

They are compared with the results of the Markovian

unconstrained evolution of our own EvolFMC

�

EvolFMC was previously x-checked with QCDnum16 and

APCHEB

�

The agreement of Nonmarkovian EvolCMC and Markovian

EvolFMC is excelent, 
 ��� �� 

.

Monte Carlo Solutionsof the QCD Evolution Equations – p.31/34



Test of non-Markovian Constrained MC; DGLAP
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Test of non-Markovian Constrained MC; HERWIG
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Summary and outlook

� It is demonstrated using prototype program that
the Constrained MC works in practice for the
HERWIG evolution and for standard LL DGLAP
with Quark � Gluon transitions.

� Still to be done soon: Including the rest of NLL
corrections into CMC, mapping into full

�

� �

phase space, and more...

� How to exploit this new technology in the
construction of the full scale parton shower MC?
To be seen...

� Most likely application: unified approach with
unintegrated PDFs (CCFM style) and parton
shower MC, up to NLL.
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