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Motivation

• FNAL/RHIC tt̄ PRODUCTION; POLARIZED pp PROCESSES;

bb̄ PRODUCTION; J/Ψ PRODUCTION: SOFT n(G) EFFECTS

ALREADY NEEDED

∆mt = 5.1 GeV with SOFT n(G) UNCERTAINTY ∼ 2-3 GeV,

..., ETC.

• FOR THE LHC/TESLA/LC, THE REQUIREMENTS WILL BE

EVEN MORE DEMANDING AND OUR QCD SOFT n(G) MC

EXPONENTIATION RESULTS WILL BE AN IMPORTANT PART

OF THE NECESSARY THEORY – YFS EXPONENTIATED

O(α2
s)L, IN THE PRESENCE OF SHOWERS, ON AN

EVENT-BY-EVENT BASIS, WITHOUT DOUBLE COUNTING

AND WITH EXACT PHASE SPACE.

• HOW RELEVANT ARE QED HIGHER ORDER CORRECTIONS

WHEN QCD IS CONTROLLED AT ∼ 1% PRECISION?

• CROSS CHECK OF QCD LITERATURE:

1. PHASE SPACE – CATANI, CATANI-SEYMOUR, ALL INITIAL

PARTONS MASSLESS

2. RESUMMATION – STERMAN, CATANI ET AL., BERGER ET

AL., ....

3. NO-GO THEOREMS

4. IR QCD EFFECTS IN DGLAP THEORY
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• CROSS CHECK OF QED LITERATURE:

1. ESTIMATES BY SPIESBERGER, STIRLING, ROTH and

WEINZIERL – FEW PER MILLE EFFECTS FROM QED

CORRECTIONS TO STR. FN. EVOLUTION.

2. WELL-KNOWN POSSIBLE ENHANCEMENT OF QED

CORRECTIONS AT THRESHOLD, ESPECIALLY IN

RESONANCE PRODUCTION

⇒ HOW BIG ARE THESE EFFECTS AT THE LHC?

• TREAT QED AND QCD SIMULTANEOUSLY IN THE YFS

EXPONENTIATION TO ESTIMATE THE ROLE OF THE QED

AND TO ILLUSTRATE AN APPROACH TO SHOWER/ME

MATCHING.

• QUANTUM GENERAL RELATIVITY:STILL NO

PHENOMENOLOGICALLY TESTED THEORY

• OUTSTANDING ISSUES: FINAL STATE OF HAWKING

RADIATION, ... – FERTILE GROUND FOR RESUMMATION;

SEE ALSO WORK BY REUTER ET AL., LITIM, DONOGHUE ET

AL., CAVAGLIA, SOLA ET AL., ETC.
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PRELIMINARIES

• WE USE THE GPS CONVENTIONS OF JWW FOR SPINORS;
PHOTON-GLUON POLARIZATION VECTORS FOLLOW
THEREFROM:

(ε
µ
σ(β))∗ =

ūσ(k)γµuσ(β)
√

2 ū−σ(k)uσ(β)
, (ε

µ
σ(ζ))∗ =

ūσ(k)γµ
uσ(ζ)

√
2 ū−σ(k)uσ(ζ)

, (1)

• REPRESENTATIVE PROCESSES

pp → V +n(γ)+m(g)+X → ¯̀̀ ′ +n′(γ)+m(g)+X ,

where V = W±, Z ,and ` = e, µ, `′ = νe, νµ(e, µ)

respectively for V = W+(Z), and ` = νe, νµ, `′ = e, µ

respectively for V = W−.

Quantum Gravity Loop Corrections to Elementary Particle

Progpagators
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Review of YFS Theory and Its Extension to QCD

QED CASE – S. Jadach et al., YFS2, YFS3, BHLUMI, BHWIDE, KORALZ,

KKMC, YFSWW3, YFSZZ, KoralW

For e+(p1)e
−(q1) → f̄(p2)f(q2) + n(γ)(k1, ·, kn), renormalization group

improved YFS theory (PRD36(1987)939) gives

dσexp = e2α Re B+2α B̃
∞

∑

n=0

1

n!

∫ n
∏

j=1

d3kj

k0
j

∫

d4y

(2π)4
eiy(p1+q1−p2−q2−

∑

j kj)+D

β̄n(k1, . . . , kn)
d3p2d

3q2

p0
2q

0
2

where the YFS real infrared function B̃ and the virtual infrared function B are

known and where we note the usual connections

2α B̃ =

∫ k≤Kmax d3k

k0
S̃(k)

D =

∫

d3k
S̃(k)

k0

(

e−iy·k − θ(Kmax − k)
)

(2)
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for the standard YFS infrared emission factor

S̃(k) =
α

4π2

[

QfQ(
f̄
) ′

(

p1

p1 · k
−

q1

q1 · k

)2

+ (. . . )

]

(3)

if Qf is the electric charge of f in units of the positron charge. For example,

the YFS hard photon residuals β̄i in (1), i = 0, 1, 2, are given in S. Jadach et

al.,CPC102(1997)229 for BHLUMI 4.04 ⇒ YFS exponentiated exact O(α) and

LL O(α2) cross section for Bhabha scattering via a corresponding Monte

Carlo realization of (1).
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In hep-ph/0210357(ICHEP02), Acta Phys.Polon.B33,1543-1558,2002, we have

extended the YFS theory to QCD:

dσ̂exp =
∑

n

dσ̂n

= eSUMIR(QCD)
∞

∑

n=0

∫ n
∏

j=1

d3kj

kj

∫

d4y

(2π)4
eiy·(P1+P2−Q1−Q2−

∑

kj)+DQCD

∗ ˜̄βn(k1, . . . , kn)
d3P2

P 0
2

d3Q2

Q 0
2

(4)

where now the hard gluon residuals ˜̄βn(k1, . . . , kn) defined by

˜̄βn(k1, . . . , kn) =
∞
∑

`=0

˜̄β
(`)

n (k1, . . . , kn)

are free of all infrared divergences to all orders in αs(Q).
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• We stress that the arguments in the earlier papers (DeLaney et al.

PRD52(1995)108, PLB342(1995)239) are not really sufficient to derive the

respective analog of eq.(4); for, they did not really expose the

compensation between the left over genuine non-Abelian IR virtual and

real singularities between
∫

dPhβ̄n and
∫

dPhβ̄n+1 respectively that

really allows us to isolate ˜̄βj and distinguishes QCD from QED, where no

such compensation occurs.

• Our exponential factor corresponds to the N = 1 term in the exponent in

Gatheral’s formula (Phys. Lett.B133(1983)90) for the general

exponentiation of the eikonal cross sections for non-Abelian gauge

theory; his result is an approximate one in which everything that does not

eikonalize and exponentiate is dropped whereas our result (4) is exact.

B. F. L. Ward Oct. 6, 2005



RADCOR05 III-1

Extension to QED⊗QCD and Quantum Gravity

Simultaneous exponentiation of QED and QCD higher order effects,

hep-ph/0404087,

gives

Bnls
QCD → Bnls

QCD + Bnls
QED ≡ Bnls

QCED,

B̃nls
QCD → B̃nls

QCD + B̃nls
QED ≡ B̃nls

QCED,

S̃nls
QCD → S̃nls

QCD + S̃nls
QED ≡ S̃nls

QCED (5)

which leads to

dσ̂exp = eSUMIR(QCED)
∞

∑

n,m=0

∫ n
∏

j1=1

d3kj1

kj1

m
∏

j2=1

d3k′
j2

k′
j2

∫

d4y

(2π)4
eiy·(p1+q1−p2−q2−

∑

kj1
−

∑

k′
j2

)+DQCED

˜̄βn,m(k1, . . . , kn; k′

1, . . . , k′

m)
d3p2

p 0
2

d3q2

q 0
2

, (6)

where the new YFS residuals
˜̄βn,m(k1, . . . , kn; k′

1, . . . , k′
m), with n hard gluons and m hard photons,
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represent the successive application of the YFS expansion first for QCD and

subsequently for QED.

The infrared functions are now

SUMIR(QCED) = 2αs<Bnls
QCED + 2αsB̃

nls
QCED

DQCED =

∫

dk

k0

(

e−iky − θ(Kmax − k0)
)

S̃nls
QCED (7)

where Kmax is a dummy parameter – here the same for QCD and QED.

Infrared Algebra(QCED):

xavg(QED) ∼= γ(QED)/(1 + γ(QED))

xavg(QCD) ∼= γ(QCD)/(1 + γ(QCD))

γ(A) = 2αACA

π
(Ls − 1), A = QED, QCD

CA = Q2
f , CF , respectively, for A = QED, QCD

⇒ QCD dominant corrections happen an order of magnitude earlier than those for

QED.

⇒ Leading ˜̄β
(0,0)

0,0 -level gives a good estimate of the size of the effects we study.
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RESUMMED QUANTUM GRAVITY

APPLY (6) TO QUANTUM GENERAL RELATIVITY:

⇒

i∆′
F (k)|resummed =

ieB′′
g (k)

(k2 − m2 − Σ′
s + iε)

(8)

FOR

B′′
g (k) = −2iκ2k4

∫

d4`

16π4

1

`2 − λ2 + iε

1

(`2 + 2`k + ∆ + iε)2
(9)

THIS IS THE BASIC RESULT.

NOTE THE FOLLOWING:

• Σ′
s STARTS IN O(κ2), SO WE MAY DROP IT IN CALCULATING ONE-LOOP

EFFECTS.
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• EXPLICIT EVALUATION GIVES, FOR THE DEEP UV REGIME,

B′′
g (k) =

κ2|k2|

8π2
ln

(

m2

m2 + |k2|

)

, (10)

⇒ THE RESUMMED PROPAGATOR FALLS FASTER THAN ANY POWER

OF |k2|!

• IF m VANISHES, USING THE USUAL −µ2 NORMALIZATION POINT WE

GET B′′
g (k) = κ2|k2|

8π2 ln
(

µ2

|k2|

)

WHICH AGAIN VANISHES FASTER THAN

ANY POWER OF |k2|!

THIS MEANS THAT ONE-LOOP CORRECTIONS ARE FINITE!

INDEED, ALL QUANTUM GRAVITY LOOPS ARE UV

FINITE(MPLA17(2002)2371)!
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QED⊗QCD Threshold Corrections, Shower/ME Matching

and IR-Improved DGLAP Theory at LHC

We shall apply the new simultaneous QED⊗QCD exponentiation calculus to

the sinlge Z production with leptonic decay at the LHC ( and at FNAL) to focus

on the ISR alone, for definiteness. See also the work of Baur et al., Dittmaier

and Kramer, Zykunov for exact O(α) results and Hamberg et al., van Neerven

and Matsuura and Anastasiou et al. for exact O(α2
s) results.

For the basic formula

dσexp(pp → V + X → ¯̀̀ ′ + X ′) =
∑

i,j

∫

dxidxjFi(xi)Fj(xj)dσ̂exp(xixjs),

(11)

we use the result in (6) here with semi-analytical methods and structure

functions from Martin et al..

A MC realization will appear elsewhere.
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SHOWER/ME MATCHING

• Note the following: In (11) WE DO NOT ATTEMPT AT THIS TIME TO

REPLACE HERWIG and/or PYTHIA –

WE INTEND TO COMBINE OUR EXACT YFS CALCULUS, dσ̂exp(xixjs),

WITH HERWIG and/or PYTHIA BY USING THEM/IT “IN LIEU” OF {Fi}.

A. USE HERWIG/PYTHIA SHOWER FOR pT ≤ µ, YFS nG for pT > µ.

B. EXPAND HERWIG/PYTHIA SHOWER FORMULA⊗dσexp AND ADJUST
˜̄βn,m TO EXACTNESS FOR DESIRED ORDER WITH NEW ˜̄β

′

n,m

FIRST USE {Fi} TO PICK (x1, x2); MAKE EVT WITH dσexp; THEN

SHOWER EVT USING HERWIG/PYTHIA VIA LES HOUCHES RECIPE.

• THIS COMBINATION OF THEORETICAL CONSTRUCTS CAN BE

SYSTEMATICALLY IMPROVED WITH EXACT RESULTS

ORDER-BY-ORDER IN αs, α, WITH EXACT PHASE SPACE.

• THE RECENT ALTERNATIVE PARTON SHOWER ALGORITHM BY JADACH

and SKRZYPEK,Acta. Phys. Pol.B35, 745 (2004), CAN ALSO BE USED.

• LACK OF COLOR COHERENCE ⇒ ISAJET NOT CONSIDERED HERE.
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With this said, we compute , with and without QED, the ratio

rexp = σexp/σBorn

to get the results (We stress that we do not use the narrow resonance

approximation here.)

rexp =



























1.1901 , QCED ≡ QCD+QED, LHC

1.1872 , QCD, LHC

1.1911 , QCED ≡ QCD+QED, Tevatron

1.1879 , QCD, Tevatron

(12)

⇒

∗QED IS AT .3% AT BOTH LHC and FNAL.

∗THIS IS STABLE UNDER SCALE VARIATIONS.

∗WE AGREE WITH BAUR ET AL., HAMBERG ET AL., van NEERVEN and

ZIJLSTRA.

∗QED EFFECT SIMILAR IN SIZE TO STR. FN. RESULTS.

∗DGLAP SYNTHESIZATION HAS NOT COMPROMISED THE NORMALIZATION.
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IR-Improved DGLAP Theory

APPLY QCD EXPN THEORY TO DGLAP KERNELS:

Pqq(z) = CF FY FS(γq)e
1
2 δq

[

1 + z2

1 − z
(1 − z)γq − fq(γq)δ(1 − z)

]

(13)

where

fq(γq) =
2

γq

−
2

γq + 1
+

1

γq + 2
(14)

and

γq = CF

αs

π
t =

4CF

β0
(15)

δq =
γq

2
+

αsCF

π
(
π2

3
−

1

2
) (16)

and

FY FS(γq) =
e−CEγq

Γ(1 + γq)
. (17)
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SIMILAR RESULTS HOLD FOR PGq, PGG, PqG, GIVING:

Pqq(z) = CF FY FS(γq)e
1
2 δq

[

1 + z2

1 − z
(1 − z)γq − fq(γq)δ(1 − z)

]

,

(18)

PGq(z) = CF FY FS(γq)e
1
2 δq

1 + (1 − z)2

z
zγq , (19)

PGG(z) = 2CGFY FS(γG)e
1
2 δG{

1 − z

z
zγG +

z

1 − z
(1 − z)γG

+
1

2
(z1+γG(1 − z) + z(1 − z)1+γG) − fG(γG)δ(1 − z)},

(20)

PqG(z) = FY FS(γG)e
1
2 δG

1

2
{z2(1 − z)γG + (1 − z)2zγG}, (21)
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where

γG = CG

αs

π
t =

4CG

β0
(22)

δG =
γG

2
+

αsCG

π
(
π2

3
−

1

2
), (23)

fG(γG) =
nf

CG

1

(1 + γG)(2 + γG)(3 + γG)
+

2

γG(1 + γG)(2 + γG)
(24)

+
1

(1 + γG)(2 + γG)
+

1

2(3 + γG)(4 + γG)
(25)

+
1

(2 + γG)(3 + γG)(4 + γG)
. (26)
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Parton Distributions

Moments of kernels ⇔ Logarithmic exponents for evolution

dMNS
n (t)

dt
=

αs(t)

2π
ANS

n MNS
n (t) (27)

where

MNS
n (t) =

∫ 1

0

dzzn−1qNS(z, t) (28)

and the quantity ANS
n is given by

ANS
n =

∫ 1

0

dzzn−1Pqq(z),

= CF FY FS(γq)e
1
2 δq [B(n, γq) + B(n + 2, γq) − fq(γq)] (29)
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where B(x, y) is the beta function given by

B(x, y) = Γ(x)Γ(y)/Γ(x + y)

.

Compare the usual result

ANSo

n ≡ CF



−
1

2
+

1

n(n + 1)
− 2

n
∑

j=2

1

j



 . (30)

• ASYMPTOTIC BEHAVIOR: IR-improved goes to a multiple of −fq , consistent with

limn→∞ zn−1 = 0 for 0 ≤ z < 1;

usual result diverges as −2CF ln n.

• Different for finite n as well: for n = 2 we get, for example, for αs
∼= .118,

ANS
2 =







CF (−1.33) , un-IR-improved

CF (−0.966) , IR-improved
(31)
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• For completeness we note

MNS
n (t) = MNS

n (t0)e
∫ t

t0
dt′

αs(t′)
2π

ANS
n (t′)

= MNS
n (t0)e

ān[Ei( 1
2

δ1αs(t0))−Ei( 1
2

δ1αs(t))]

=⇒
t,t0 large with t>>t0

MNS
n (t0)

(

αs(t0)

αs(t)

)ā′
n

(32)

where Ei(x) =
∫ x

−∞
drer/r is the exponential integral function,

ān =
2CF

β0
FY FS(γq)e

γq
4 [B(n, γq) + B(n + 2, γq) − fq(γq)]

ā′
n = ān

(

1 +
δ1

2

(αs(t0) − αs(t))

ln(αs(t0)/αs(t))

) (33)

with

δ1 = CF

π

(

π2

3
− 1

2

)

.

Compare with un-IR-improved result where last line in eq.(32) holds exactly with

ā′
n = 2ANSo

n /β0.

• Comparison with Moch et al., Vogt et al., etc., in progress.
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FINAL STATE OF HAWKING RADIATION

CONSIDER THE GRAVITON PROPAGATOR IN THE THEORY OF GRAVITY COUPLED

TO A MASSIVE SCALAR(HIGGS) FIELD(Feynman). WE HAVE THE GRAPHS

���
�
���� ���� ����� 	�� ������
��	�������� ������ ���- ����� �� �����- + ��������
�

���� ���� ����� 	�� ������
��	���� ���
������-

����� � �
�� �� ��-
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'$��� ������ ���- ����� �� �����-+

q

k

q

k

�

�

k
�

k + q

k + q

(a) (b)

(c)

Figure 1: The graviton((a),(b)) and its ghost((c)) one-loop contributions to the

graviton propagator. q is the 4-momentum of the graviton.
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Figure 2: The scalar one-loop contribution to the graviton propagator. q is the

4-momentum of the graviton.

.
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USING THE RESUMMED THEORY, WE GET THAT THE NEWTON POTENTIAL

BECOMES

ΦN (r) = −
GNM

r
(1 − e−ar), (34)

FOR

a ∼= 0.210MPl. (35)

CONTACT WITH AYMPTOTIC SAFETY APPROACH

• OUR RESULTS IMPLY

G(k) = GN/(1 +
k2

a2
)

⇒ FIXED POINT BEHAVIOR FOR

k2 → ∞,

IN AGREEMENT WITH THE PHENOMENOLOGICAL ASYMPTOTIC SAFETY

APPROACH OF BONNANNO & REUTER IN PRD62(2000) 043008.
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• OUR RESULTS IMPLY THAT AN ELEMENTARY PARTICLE HAS

NO HORIZON WHICH ALSO AGREES WITH BONNANNO’S & REUTER’S

RESULT THAT A BLACK HOLE WITH A MASS LESS THAN

Mcr ∼ MPl

HAS NO HORIZON.

BASIC PHYSICS:

G(k) VANISHES FOR k2 → ∞.
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• A FURTHER “AGREEMENT”: FINAL STATE OF HAWKING RADIATION OF AN

ORIGINALLY VERY MASSIVE BLACKHOLE

BECAUSE OUR VALUE OF THE COEFFICIENT,
1

a2 ,

OF k2 IN THE DENOMINATOR OF G(k)

AGREES WITH THAT FOUND BY BONNANNO & REUTER(B-R),

IF WE USE THEIR PRESCRIPTION FOR THE

RELATIONSHIP BETWEEN k AND r

IN THE REGIME WHERE THE LAPSE FUNCTION VANISHES,

WE GET THE SAME HAWKING RADIATION PHENOMEMNOLOGY AS THEY DO:

THE BLACK HOLE EVAPORATES IN THE B-R ANALYSIS UNTIL IT REACHES A

MASS

Mcr ∼ MPl

AT WHICH THE BEKENSTEIN-HAWKING TEMPERATURE VANISHES,

LEAVING A PLANCK SCALE REMNANT.

• FATE OF REMNANT? IN hep-ph/0503189 ⇒ OUR QUANTUM LOOP EFFECTS

COMBINED WITH THE G(r) OF B-R IMPLY HORIZON OF THE PLANCK SCALE

REMNANT IS OBVIATED – CONSISTENT WITH RECENT RESULTS OF HAWKING.
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TO WIT, IN THE METRIC CLASS

ds2 = f(r)dt2 − f(r)−1dr2 − r2dΩ2
(36)

THE LAPSE FUNCTION IS, FROM B-R,

f(r) = 1 −
2G(r)M

r

=
B(x)

B(x) + 2x2
|x= r

GN M
,

(37)

WHERE

B(x) = x3 − 2x2 + Ωx + γΩ (38)

FOR

Ω =
ω̃

GNM2
=

ω̃M2
Pl

M2
. (39)
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AFTER H-RADIATING TO REGIME NEAR Mcr ∼ MPl, QUANTUM LOOPS ALLOW

US TO REPLACE G(r) WITH GN (1 − e−ar) IN THE LAPSE FUNCTION FOR

r < r>, THE OUTERMOST SOLUTION OF

G(r) = GN (1 − e−ar). (40)

IN THIS WAY, WE SEE THAT THE INNER HORIZON MOVES TO NEGATIVE r AND

THE OUTER HORIZON MOVES TO r = 0 AT THE NEW CRITICAL MASS

∼ 2.38MPl.

NOTE: M. BOJOWALD et al., gr-qc/0503041, – LOOP QG CONCURS WITH

GENERAL CONCLUSION.

PREDICTION: THERE SHOULD ENERGETIC COSMIC RAYS AT E ∼ MPl DUE

THE DECAY OF SUCH A REMNANT.
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Conclusions

YFS THEORY ( EEX AND CEEX) EXTENDS TO NON-ABELIAN GAUGE

THEORY AND ALLOWS SIMULTANEOUS EXPN OF QED AND QCD WITH

PROPER SHOWER/ME MATCHING BUILT-IN.

FOR QED⊗QCD

• FULL MC EVENT GENERATOR REALIZATION IS POSSIBLE.

• SEMI-ANALYTICAL RESULTS FOR QED (AND QCD) THRESHOLD

EFFECTS AGREE WITH LITERATURE ON Z PRODUCTION

• AS QED IS AT THE .3% LEVEL, IT IS NEEDED FOR 1% LHC THEORY

PREDICTIONS.

• A FIRM BASIS FOR THE COMPLETE O(α2
s, ααs, α

2) MC RESULTS

NEEDED FOR THE FNAL/LHC/RHIC/TESLA/LC PHYSICS HAS BEEN

DEMONSTRATED AND ALL THE LATTER IS IN PROGRESS.

B. F. L. Ward Oct. 6, 2005
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THE THEORY ALLOWS A NEW APPROACH

TO QUANTUM GENERAL RELATIVITY:

• RESUMMED QG UV FINITE

• MANY CONSEQUENCES:

BLACK HOLES EVAPORATE TO FINAL MASS ∼ MPl

WITH NO HORIZON

⇒ E ∼ MPl COSMIC RAYS, · · · .

B. F. L. Ward Oct. 6, 2005


