Two-loop SUSY QCD correction to the gluino pole mass

Youichi Yamada (Tohoku Univ.)

YY, Phys. Lett. B 623 (2005) 104 [hep-ph/0506262]

RADCOR 05, Shonan Village, Oct. 2-7, 2005

• Gluino mass:

SUSY breaking parameters precision measurement vs. radiative correction

• $O(\alpha_s^2)$ correction to the gluino pole mass

• Numerical results

The mass of the Higgs boson in the standard model, $m_H^2 = O(100)$ GeV, generally receives very large radiative correction from unknown physics in the unified theory around $M_P = O(10^{19})$ GeV.

$$v^2 \sim m_H^2 = m_H^2(\text{bare}) + O(g^2 M_P^2)$$

$$m_H^2 \ll \ll m_H^2(\text{bare}) \sim M_P^2:$$

Fine tuning problem

The most popular solution: introduce supersymmetry (SUSY) in the unified theory. Forbid $O(M_P^2)$ corr.

In SUSY theories, each particle has its "superpartner" with common mass and gauge charges, but different spin by 1/2.

An example: MSSM (minimal supersymmetric standard model)

Chiral supermultiplets

fermion $(s = 1/2)$		scalar ($s = 0$)	
$q_L = (u_L, d_L)$	quarks	$ ilde{q}_L = (ilde{u}_L, ilde{d}_L)$	squarks
u_R , d_R		${ ilde u}_R$, ${ ilde d}_R$	
$l_L = (u_L, e_L)$	leptons	$ ilde{l}_L = (ilde{ u}_L, ilde{e}_L)$	sleptons
e_R		$ ilde{e}_R$	
$ ilde{H}_D$, $ ilde{H}_U$	higgsino	H_D , H_U	Higgs bosons

Vector supermultiplets

fermion $(s = 1/2)$		gauge boson ($s = 1$)	
\widetilde{g}	gluino	g_{μ}	SU(3) boson (gluon)
ilde W	wino	W_{μ}	SU(2) boson
$ ilde{B}$	bino	B_{μ}	U(1) boson

The superpartners must be heavier than current experimental reach.

 \Rightarrow Breaking of SUSY

Supersymmetry in the unified theory must be broken in our world.

Unified Theory spontaneous SUSY breaking

 \Downarrow

Low-energy effective theory

(here assume MSSM)

soft SUSY breaking parameters

scalar masses m_{ϕ}^2 , ϕ^3 couplings A_f , gaugino masses $M_{3,2,1}$

Important clue to the SUSY breaking mechanism

 $\delta m_H^2 = O(g^2 M_{\text{SUSYbreaking}})$: SUSY solves hierarch problem if $M_{\text{SUSYbreaking}} < O(\text{TeV})$

Gaugino masses in the MSSM

Gauginos in MSSM SU(3) gluino \tilde{g} , SU(2) wino \tilde{W} , U(1) bino \tilde{B}

In many candidates of the unified theories, the masses (M_3, M_2, M_1) of these gauginos unify at the GUT/Planck scale

- SUSY GUT with gauge-symmetric SUSY breaking
- Universal gaugino mass at M_P (minimal SUGRA etc.)

 $\Rightarrow M_3(Q)/\alpha_s(Q) \sim M_2(Q)/\alpha_2(Q) \sim 3M_1(Q)/5\alpha_Y(Q)$ at low Q

In other theories without unification of $M_{3,2,1}$, their ratios are predicted.

Ex. anomaly mediation $(M_3, M_2, M_1)(Q) \propto (-3\alpha_s, \alpha_2, 11\alpha_Y)(Q)$

To test these models, it is important to obtain precise values of (M_3, M_2, M_1) in future studies at LHC and ILC

 $M_{1,2,3}$ also contribute to the running of other SUSY breaking paraters $(m_{\phi}^2,\,A_f)$

To probe the SUSY breaking mechanism by precision measurements, we need precise formulas of the relations between physical observables and lagrangian parameters.

Physical observables
$$\longleftrightarrow$$
Lagrangian parametersmasses, cross-sections... $M_{1,2,3}(Q \sim 1 \text{ TeV})...$ of SUSY particles

Ref. Supersymmetry Parameter Analysis (SPA) Project Two-loop mass corrections by Bednyakov et al. (t,b), Heinemeyer et al. (Higgs), Martin (scalars), ...

Here we consider the relation between the physical mass of the gluino $m_{\tilde{g}}$ and the tree-level mass M_3 in the lagrangian, to the two-loop order.

Precision measurement vs. loop correction for the gluino mass

Gluino \tilde{g} is expected to be copiously produced at the LHC, then produce decay chains such as

 $\tilde{g} \rightarrow q \tilde{q} \rightarrow q q \tilde{\chi}_2^0 \rightarrow q q l l \tilde{\chi}_1^0$

Combined analysis of various decay chains of SUSY particles may determine $m_{\tilde{q}}$ (= M_3 at tree-level) quite precisely.

A simulation (Chiorboli et al. (2004)): for the parameter set SPS1a with $m_{\tilde{g}} \sim 600 \text{ GeV}$ $\delta m_{\tilde{g}} = \pm 8 \text{ GeV}$ from the LHC ($\mathcal{L} \sim 300 \text{ fb}^{-1}$) $\rightarrow 6.5 \text{ GeV}$ by combining with the ILC data $[\sqrt{s} \leq 1 \text{ TeV}, \ \mathcal{L} \sim 1000 \text{ fb}^{-1}]$ On the other hand, $m_{\tilde{g}}$ receives large radiative corrections.

```
O(\alpha_s) corr. ~ O(10) %

\Downarrow

Naive expectation: O(\alpha_s^2) corr. ~ O(1) %

Comparable to experimental uncertainty?
```

We need explicit calculation of the two-loop correction to $m_{\tilde{g}}$.

Gluino pole mass $m_{\tilde{g}}$ at $O(\alpha_s^2)$

Given by the complex pole of the gluino propagator $s_p = (m_{\tilde{g}} - i\Gamma_{\tilde{q}}/2)^2$

$$m_{\tilde{g}} = M_3(Q) + \delta m_{\tilde{g}}^{(1)} + \delta m_{\tilde{g}}^{(2)}$$

 $M_3(Q)$: running mass in the lagrangian

 $\delta m_{\tilde{g}}$: Calculated from the self energy $i(\Sigma_K(p^2)p + \Sigma_M(p^2))$

For simplicity, we assume \diamond degenerate squark mass $m_{\tilde{q}}$ $\diamond m_q \ll (m_{\tilde{g}}, m_{\tilde{q}})$ \rightarrow ignore m_q and \tilde{q}_L - \tilde{q}_R mixing in the loops. One-loop correction (Martin, Vaughn; Pierce, Papadopoulos; ...)

$$\begin{split} \delta m_{\tilde{g}}^{(1)} &= -\text{Re}[M_{3}\Sigma_{K}^{(1)}(M_{3}^{2}) + \Sigma_{M}^{(1)}(M_{3}^{2})] \\ &= \frac{C_{V}\alpha_{s}(Q)}{4\pi}M_{3}(Q)\left(5 - 6\log\frac{M_{3}(Q)}{Q}\right) \\ &+ \frac{\alpha_{s}(Q)}{\pi}N_{q}T_{F}M_{3}(Q)B_{1}(M_{3}(Q)^{2}, 0, m_{\tilde{q}}(Q)) + O(\alpha_{s}m_{q}^{2}/m_{\tilde{q}}^{2}) \\ C_{V} &= 3, \ T_{F} = 1/2, \ N_{q} = 6 \\ \text{typically } \delta m_{\tilde{q}}^{(1)}/m_{\tilde{g}}^{(1)} = O(10) \ \% \end{split}$$

Enhanced by

- large α_s
- large SU(3) representation ($C_V(\text{octet}) \gg T_F(\text{doublet})$)

 $(\alpha_s, M_3, m_{\tilde{q}})$ in $\delta m_{\tilde{g}}^{(1)}$: need precise definition to define $\delta m_{\tilde{g}}^{(2)}$ Here we use $\overline{\text{DR}}'$ parameters at $Q \sim M_3$. Two-loop $O(\alpha_s^2)$ correction to $m_{\tilde{g}}$

$$\delta m_{\tilde{g}}^{(2)} = -\operatorname{Re}[M_3 \Sigma_K^{(2)}(M_3^2) + \Sigma_M^{(2)}(M_3^2)] \\ + \operatorname{Re}\left[\{M_3 \Sigma_K^{(1)}(M_3^2) + \Sigma_M^{(1)}(M_3^2)\}\{\Sigma_K^{(1)}(M_3^2) + 2M_3 \dot{\Sigma}_K^{(1)}(M_3^2) + 2M_3 \dot{\Sigma}_M^{(1)}(M_3^2)\}\right]$$

 $\delta m_{\tilde{g}}^{(2)} = \delta m_{\tilde{g}}^{(2,1)} + \delta m_{\tilde{g}}^{(2,2)} : \text{ function of } (M_3, \alpha_s, m_{\tilde{q}})$ $\delta m_{\tilde{g}}^{(2,1)} : \text{ loops with only gluons and gluinos } (m_{\tilde{q}} \text{ indep.})$ $\delta m_{\tilde{g}}^{(2,2)} : \text{ loops including quarks and squarks}$

Correction with only gluinos and gluons

$$\delta m_{\tilde{g}}^{(2,1)} = \left(\frac{C_V \alpha_s}{4\pi}\right)^2 M_3 \left(-48 \log \frac{M_3}{Q} + 36 \log^2 \frac{M_3}{Q} + 26 + 5\pi^2 - 4\pi^2 \log 2 + 6\zeta_3\right)$$

At
$$Q = M_3$$
, $\delta m_{\tilde{q}}^{(2,1)}/M_3 \sim 31(\alpha_s/\pi)^2 \sim 0.03$.
cf. $\delta m_{\tilde{g}}(\exp)/m_{\tilde{g}} \sim 1.3$ % for $m_{\tilde{g}} \sim 600$ GeV (SPS1a)

Correction including quarks/squarks

solid line with an arrow: quark, dashed line with an arrow: squark

 $\delta m_{\tilde{g}}^{(2,2)}(M_3, \alpha_s, m_{\tilde{q}})$: Expressed in terms of scalar intergral basis (numerical calculation by TSIL package)

Residual dependence of $m_{\tilde{g}}$ on the renormalization scale

 $M_3(580 \text{GeV}) = 580 \text{ GeV}, \ m_{\tilde{q}}(580 \text{GeV}) = 800 \text{ GeV},$

cf. tree-level mass: $M_3(400) = 589 \text{ GeV} \rightarrow M_3(1400) = 559 \text{ GeV}$

Gluino pole mass at one- and two-loops (tree: $M_3(M_3) = 580$ GeV)

1-2 % increase of $m_{\tilde{g}}$ by $O(\alpha_s^2)$ corr. $\geq \delta m_{\tilde{g}} \sim 1$ % at LHC/ILC(expected) $\delta m_{\tilde{g}}^{(2)} > |\delta m_{\tilde{g}}^{(1)}(m_{\overline{\text{DR}}}(Q = M_3)) - \delta m_{\tilde{g}}^{(1)}(m_{\text{pole}})|$

Remaining issues

* contribution of m_q and $\tilde{q}_L - \tilde{q}_R$ mixing to $\delta m_{\tilde{g}}^{(2)}$ suppressed by $m_q^2/(m_{\tilde{g}}^2, m_{\tilde{q}}^2)$ may be important for light gluino/squarks

* $O(\alpha_s h_q^2)$ corrections involving Higgs bosons/higgsinos

Cf. General formulas for two-loop corrections to fermion masses: (S.P. Martin, hep-ph/0509115)

* Installation to the computer codes for calculating SUSY particle masses

Conclusion

* The pole mass of the gluino $m_{\tilde{g}}$ has been calculated as a function of the lagrangian parameters $(M_3(Q), m_{\tilde{q}}(Q), \alpha_s(Q))$) to $O(\alpha_s^2)$.

* The two-loop corrrection to $m_{\tilde{g}}$ for a given $M_3(Q)$ is typically 1–2 %, which may be larger than the expected uncertainty in precision mass determination at future colliders.