KEK Cosmophysics Group Inaugural Conference AIU 08 @ KEK 2008.3.13 Primordial non-Gaussianities in new ekpyrotic cosmology

Shuntaro Mizuno (RESCEU, Tokyo)

with Kazuya Koyama (Portsmouth) Filippo Vernizzi (Trieste) David Wands (Portsmouth) CQG 24, 3919 (2007) JCAP11, 024 (2007)

Contents

1. Introduction

old ekpyrotc cosmology

 New ekpyrotic cosmology (1) generation of nearly scale-invariant spectrum with Koyama, Wands CQG 24 (2007) 3919
 New ekpyrotic cosmology (2) esitimate of primordial non-Gaussianities with Koyama, Vernizzi, Wands JCAP 11 (2007) 024
 Conclusions

1.Introduction

perturbations

Observations on non-Gaussianities deviation from Gaussian distribution

• conventional parametrisation Komatsu and Sperbel 2001 $\zeta = \zeta_L - \frac{\frac{3}{5}f_{NL}\zeta_L^2}{\text{Curvature}}$

 ζ_L obeys Gaussian statistics

 $f_{NL} \sim 0$ for almost free theories like standard inflation

• Constraints on f_{NL} from WMAP 5-year

 $-9 < f_{NL} < 111$ Komatsu et al. 2008 favoring relatively large non-Gaussianity

Need to consider the early universe scenarios other than the standard inflationary scneario?

Old ekpyrotic scenario

• Set-up Khoury, Ovrut, Steinhardt, Turok `01

Hot big-bang universe is produced by the collision of branes!

separation is parametrized by a scalar field Φ

- Set up is based on heterotic M theory Lucas, Ovrut, Waldram `98
 Eluctuation is generated
- Fluctuation is generated in the contracting phase

bulk brane moves toward visible brane

• Collision of two branes thermalise the visible brane

Evolution of scales

• Slow roll inflation

$$a = t^{p}$$
$$H = \frac{p}{t}$$
with $p \gg 1$
$$\tau = -1/(aH)$$

$$a = (-t)^p$$

- $H = \frac{p}{-t}$
 - with $p \ll 1$ $\tau \simeq t/a$

Primordial curvature perturbations

In contracting phase, cosmology on the brane is described by 4d effective scalar field theory with potential $V(\phi) = -V_0 \exp\left(-\sqrt{\frac{2}{p}}\frac{\phi}{M_p}\right)$ $p \ll 1$

• Spectrum Lyth `02

$$n = 1 + \frac{2}{1-p} \xrightarrow{}{} 3_{p \to 0}$$

strongly blue tilted

- comoving curvature perturbation remains constant for adiabatic perturbations on large scales
- strongly blue tilted spectrum for single field model in which 4d effective theory is valid

Is it really impossible to obtain scale-invariant spectrum in the context of the ekpyrotic scenario?

2. New ekpyrotic cosmology (1)

generation of nearly scale-invariant spectrum

SM with K. Koyama and D. Wands CQG 24 (2007) 3919

2.New ekpyrotic cosmology (1)

Lehners, McFadden, Turok, Steinhardt `07 Buchbinder, Khoury, Ovrut `07, Creminelli, Senatore `07

• Model Considering the coupling with moduli During the phase much before the collision

$$V(\phi_{1},\phi_{2}) = -V_{1}e^{-c_{1}\phi_{1}} - V_{2}e^{-c_{2}\phi_{2}}$$

$$= -U(\chi)e^{-c\varphi}$$

$$c_{1},c_{2} \gg 1$$

$$\phi_{2}$$

$$U_{0}\left[1 + \frac{c^{2}}{2}(\chi - \chi_{0})^{2} + \cdots\right]$$

$$c = \frac{c_{1}c_{2}}{\sqrt{c_{1}^{2} + c_{2}^{2}}} \gg 1$$

Background dynamics

Scaling solutions play important roles in the system with exponential potentials

• Scaling solution supported by a single field ϕ_i (i = 1, 2)

$$a = (-t)^{p_i}, \quad \phi_i = \frac{2}{c_i} \ln(-t) - \frac{1}{c_i} \ln\left(\frac{p_i(1-3p_i)}{V_i}\right)$$

with $p_i = \frac{2}{c_i^2}$
cf. old ekpyrotic model
Multi-field scaling solution

assisted contraction $a = (-t)^p, \quad \phi_i = \frac{2}{c_i} \ln(-t) - \frac{1}{c_i} \ln\left(\frac{2(1-3p)}{c_i^2 V_i}\right)$ with $p = \frac{2}{c^2}, \quad c = \frac{c_1 c_2}{\sqrt{c_1^2 + c_2^2}}$ if $c^2 > 6$

Adiabatic and entropy perturbations

scalar field perturbations with multi fields can be decomposed into the instantaneous adiabatic and entropy perturbations

Sasaki, Tanaka `98

adiabatic perturbation
 entropy perturbation

 $\delta r = \sin \theta \delta \phi_1 + \cos \theta \delta \phi_2$

 $\delta s = \cos\theta \delta \phi_1 - \sin\theta \delta \phi_2$ with $\theta = \arctan \frac{\phi_1}{\dot{\phi}_2}$

curvature perturabtions

- δr : along the direction of the background field's evolution
- $\delta s:$ orthogonal to the background trajectory

Generation of entropy perturbations

evolution eq. for entropy field

$$\ddot{\delta s} + 3H\dot{\delta s} + \frac{k^2}{a^2}\delta s + (V_{,ss} - \dot{\theta}^2)\delta s = -2\frac{\dot{\theta}}{\dot{r}} \left[\dot{r}\dot{\delta r} - \left(\frac{\dot{r}^3}{2H} + \ddot{r}\right)\delta r\right]$$

coupling with adiabatic field

If we choose the background as

- $\theta = \arctan \frac{c_2}{c_1}$
- multi-field scaling solution (B) $\theta = \arctan \theta$ single field scaling solution (B1, B2) $\theta = \frac{\pi}{2}, 0$
- adiabatic and entropy fields are decoupled
 possible to quantise the independent fluctuations
- spectral index
 - B: $n_{\delta s} = 2p$ scale-invariant for $p \to 0$ B1,B2: $n_{\delta s} = 2$ blue

Stability analysis

• Phase space variables

$$x_i \equiv \frac{\dot{\phi}_i}{\sqrt{6}H}, \quad y_i \equiv \frac{\sqrt{V_i e^{-c_i \phi}}}{\sqrt{3}H}$$

• Flxed points i = 1, 2

constrained by $\frac{b_i}{2}$ $\sum_j x_j^2 - \sum_j y_j^2 = 1$

A: $\sum_{j} x_{j}^{2} = 1$, $y_{j} = 0$ (kinetic term dominant solution)

Bi:
$$x_i = \frac{c_i}{\sqrt{6}}, y_i = -\sqrt{\frac{c_i^2}{6}} - 1, x_j = y_j = 0, \text{ (for } j \neq i \text{)}$$

(single field dominant scaling solution)

B:
$$x_j = \frac{\sqrt{6}}{3p} \frac{1}{c_j}, y_j = -\sqrt{\frac{2}{c_j^2 p} \left(\frac{1}{3p} - 1\right)}$$

(multi-field scaling solution)

• linear analysis A: unstable Bi: stable B: saddle for $\begin{bmatrix} c_i^2 > 6 \\ \sum c_i^{-2} < 1/6 \end{bmatrix}$

Predictions from linear perturbation

SM with Koyama, Wands, CQG 24, 3919 (2007)

• Primordial power spectrum

$$\mathcal{R}_c = \frac{c^2}{2\sqrt{c_1^2 + c_2^2}} \left| \frac{H}{2\pi} \right|_T$$

• teosor-scalar ratio

T: transition time from the scaling sol.

 $c = \frac{c_1 c_2}{\sqrt{c_1^2 + c_2^2}}$

Assuming the followings:

- non-singular bounce is realised comoving curvature perturbation is conserved
- matter comes from the adiabatic field at the bounce no isocurvature perturbations in the expanding universe

3. New ekpyrotic cosmology (2)

esitimate of primordial non-Gaussianities

SM with Koyama, Vernizzi, Wands JCAP 11 (2007) 024

3. Primordial Non-Gaussianities

- assumptions
- Koyama, SM, Vernizzi, Wands, JCAP11 024 (2007)
- Initial condition are set to realise multi-field scaling solution (B).
- Final stage of the ekpyrotic collapse is descrebed by single-field dominated scaling solution (B2).
- Transition from B to B2 occurs instantaneously. valid in fast-roll limit

Statistics of scalar field fluctuations

origin of the perturbations is scalar field fluctuation $\,\delta\chi$

perturbative expansion

$$\delta \chi = \frac{\delta \chi_1 + \frac{1}{2} \delta \chi_2 + \frac{1}{6} \delta \chi_3 + \dots ,$$

free field

power spectrum

$$\langle \delta \chi_{\mathbf{k}_1} \delta \chi_{\mathbf{k}_2} \rangle \equiv P(k)(2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_2) \,,$$

$$\longrightarrow$$
 leading order $\mathcal{P}(k) \equiv \frac{4\pi k^3}{(2\pi)^3} P(k) = \frac{1}{p^2} \left(\frac{H}{2\pi}\right)^2$

• bispectrum

$$\langle \delta \chi_{\mathbf{k}_1} \delta \chi_{\mathbf{k}_2} \delta \chi_{\mathbf{k}_3} \rangle \equiv B(k_1, k_2, k_3) (2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) ,$$

 \longrightarrow leading order $\sim \langle \delta \chi_1 \delta \chi_1 \delta \chi_2 \rangle$

δN formalism

• idea

(curvature perturbation) = (perturbed expansion)

Separate universe assumption (e.g. Salopek and Bond, `90

assumption

Wands, Malik, Lyth, Liddle, `00)

 \mathcal{X}

 $\delta \chi_i(x)$

Friedmann Friedmann

 $\delta \chi_i(y)$

local expansion behaves like a locally homogeneous and isotropic universe

justified on sufficiently large scales

• local expansion $N(t_f, x) = N(t_f, \delta \chi(t_i, x))$

curvature perturbations

 $\zeta(x) = \delta N(x) = N_{,\chi_i} \delta \chi_i + \frac{1}{2} N_{,\chi_i \chi_i} (\delta \chi_i)^2$

Statistics of curvature perturbations

nonlinear parameter

$$f_{NL} \equiv \frac{5}{6} \frac{\prod_j k_j^3}{\sum_j k_j^3} \frac{B_{\zeta}}{4\pi^4 \mathcal{P}_{\zeta}^2} \qquad \text{bispectrum}$$

three-point function

δN formalism
separate universe assumption

 $\langle \zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}} \rangle = \frac{N_{,\chi_{i}}^{3} \langle \delta \chi_{i\mathbf{k}_{1}} \delta \chi_{i\mathbf{k}_{2}} \delta \chi_{i\mathbf{k}_{3}} \rangle}{1 \text{ intrinsic non-Gaussianity}}$ + $\frac{1}{2} N_{,\chi_{i}}^{2} N_{,\chi_{i}\chi_{i}} \langle \delta \chi_{i\mathbf{k}_{1}} \delta \chi_{i\mathbf{k}_{2}} (\delta \chi_{i} \star \delta \chi_{i})_{\mathbf{k}_{3}} \rangle + \text{ perms.}$

by nonlinear dynamics on super Hubble scale

 $\delta \chi_i$: initial entropy field fluctuation N: local expansion

Non-Gaussianity by nonlinear dynamics

• nonlinear parameter

$$f_{NL}^{(4)} = \frac{5}{6} \frac{N_{,\chi_i\chi_i}}{N_{,\chi_i}^2} \qquad \longleftarrow \quad \delta\chi_{\mathbf{k}} \text{ is free field at leading order}$$

background expansion

$$N = \int_{t_i}^{t_T} H dt + \int_{t_T}^{t_c} H dt \qquad \text{(instantaneous transition}$$

multi-field single-field
scaling solution scaling solution

$$= \frac{2}{c_1^2} \log |H_T| + const. = -\frac{2}{c_1^2} \log |\delta\chi_i| + const.$$

$$\int_{NL}^{(4)} \frac{5}{12} c_1^2$$

Non-Gaussianity by intrinsic scalar field

three-point correlator of scalar field

$$\langle \delta \chi^3(t_i) \rangle = -i \int_{-\infty}^{t_i} dt \langle [\delta \chi^3(t_i), H_{\rm int}(t)] \rangle$$
 Maldacena, 2003

interaction Hamiltonian

$$H_{\rm int}(t) = \int dx a^3 \frac{1}{3!} \frac{d^3 V(t)}{d\chi^3} \delta\chi^3$$

considering only the cubic interactionneglect interaction with graviton

$$f_{NL}^{(3)} = \frac{5}{12} (c_1^2 - c_2^2) \left(\frac{H_i}{H_T}\right) \longleftarrow \text{ suppressed by } \frac{H_i}{H_T}$$

4.Conclusion $V = -V_1 e^{-c_1 \phi_1} - V_2 e^{-c_2 \phi_2}$

- Ekpyrotic collapse with multiple fields
- Scale-invariant isocurvature perturbations are generated during multi-field scaling solutions
- Unstable modes drives the multi-field scaling solutions to single field dominated scaling solutions
- Transition automatically converts the initial isocurvature perturbations to curvature perturbations

$$r \simeq 0, \quad \mathcal{R}_c = \frac{c^2}{2\sqrt{c_1^2 + c_2^2}} \left| \frac{H}{2\pi} \right|_T \quad \text{with} \ c = c_1^2 c_2^2 / \sqrt{c_1^2 + c_2^2}$$

• Large non-Gaussianities are generated during transition

$$f_{NL} = \frac{5}{12}c_j^2$$
 cf, $n_s = \frac{4}{c^2}$

Discussions

• Spectrum is slightly blue for pure exponential potentials $n = 4/c^2$, $c \gg 1$

-deviation from exponential potential

- Non-Gaussianities from other mechanisms Lehners and Steinhardt (arXive: 0712.3779)
- How to realise the non-singular bounce? -relying on ghost condensation
- How to realise initial to be near the saddle point Buchbinder, Khoury, Ovrut (arXive: 0706.3903)