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Obs. in FLRW univrse
 Obs. in “averaged” 

universe
1) Both agree or not ? 
2) If not, 

                           what’s difference?



(not a complete list, )
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Distances play important roles in cosmological observations, especially in gravitational
lens systems, but there is a problem in determining distances because they are defined
in terms of light propagation, which is influenced gravitationally by the inhomogeneities
in the universe. In this paper we first give the basic optical relations and the definitions
of different distances in inhomogeneous universes. Next we show how the observational
relations depend quantitatively on the distances. Finally, we give results for the frequency
distribution of different distances and the shear effect on distances obtained using various
methods of numerical simulation.

§1. Introduction

In optical relations among observed quantities, distances such as the luminos-
ity distance and the angular diameter distances play an important role. They are
clearly defined in the homogeneous Friedmann-Lemaitre-Robertson-Walker model
(Weinberg, 1) Schneider et al. 2)) owing to the simple nature of light propagation in
this case. In inhomogeneous universes, however, their behavior is complicated, due
to gravitational lens effect which implies that light rays are deflected gravitationally
by an inhomogeneous matter distribution. On the other hand, we also use distances
to interpret the structure of gravitationally lensed systems.

To correctly treat distances in inhomogeneous universes, it is necessary first to
have a reasonable formulation for the dynamics describing local matter motion and
optics and clarify the validity condition of the formulation. A set of fluid dynamical
equations and the Poisson equation in the cosmological Newtonian approximation
was introduced and discussed by Nariai 3) and Irvine 4) under the conditions

|Φ| ! 1, (v/c)2 ! 1, L/LH ! 1, (1.1)

where Φ, v, L and LH are the Newtonian gravitational potential, matter velocity,
the characteristic size of inhomogeneities and the horizon size ≈ ct, respectively, and
the spacetime is expressed as

ds2 = −(1 + 2Φ)c2dt2 + (1 − 2Φ)a2(t)[dχ2 + σ2(χ)dΩ2], (1.2)

where a(t) is the scale-factor, σ(χ) = sin χ, χ, sinhχ for the background curvature
∗) E-mail address: tomita@yukawa.kyoto-u.ac.jp

∗∗) E-mail address: asada@phys.hirosaki-u.ac.jp
∗∗∗) E-mail address: hamana@astr.tohoku.ac.jp



Topic is modern still now! 



Light propagation  
through inhomogeneity 
Zeldovich (1964)
Dashevskii, Slysh (1964)

Dyer, Roeder (1972,73)
Kantowski (1969)
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Dyer, Roeder (1972,73)
“Dyer-Roeder” distance 

Raychaudhuri Eq  

158 K. Tomita, H. Asada and T. Hamana

2.2. Optical scalars
Using Eqs. (2.3) and (2.4) we obtain

(δ⊥xα)· = Aα
βδ⊥xβ , (2.11)

where
Aαβ = hγ

αhλ
βkγ;λ. (2.12)

The tensor Aαβ can be uniquely split as

Aαβ = A[αβ] + θhαβ + σαβ ,

ω =
[1
2
A[αβ]A

αβ
]

1
2

=
[1
2
k[α;β]k

α;β
]

1
2

,

θ =
1
2
Aγ

γ =
1
2
kγ

;γ , σαβ = A(αβ) −
1
2
Aγ

γhαβ ,

σ =
(1

2
σαβσαβ

)
1
2

=
{1

2

[

k(αβ)k
αβ − 1

2
(kγ

;γ)2
]}

1
2

, (2.13)

where θ, σ and ω are optical scalars representing the expansion, shear and rotation,
respectively, of ray bundles. In geometric optics which we assume in the following,
the rotation vanishes because kµ is a gradient vector. By the transformation of v,
θ, σ and ω transform, but θdv, σdv and ωdv are invariant (Jordan et al., 23) Sachs 18)).

The evolution equations for θ and σ are

dθ

dv
=

1
2
kµ

;µνkν = −1
2
R− (θ2 + σ2), (2.14)

dσ

dv
= −C − 2θσ, (2.15)

where R ≡ Rµνkµkν , and C is expressed in terms of the Weyl tensor as C ≡
Cαβγλkαkγ t̄β t̄λ, with tα a complex null vector satisfying tαtα = kαtα = 0, t̄αt̄α = 1.
As can be seen from Eqs. (2.14) and (2.15) there two terms causing the focusing of
ray bundles. One is the Ricci focusing term R, proportional to the matter density,
and the other is the Weyl focusing term C, connected with the shear.

2.3. Definition of distances
The length of the shadow of the interval between two rays in the observer plane

is given by
(dl)2 = gαβ δ̄⊥xαδ̄⊥xβ . (2.16)

Then we have
d(δl)
δl

= Aαβeαeβdv = (θ + σαβeαeβ)dv, (2.17)

where eα ≡ δ⊥xα/δl and gαβeαeβ = 1. Next, let us consider the area of the cross-
section of a ray bundle given by

δA =
1
2

∫

0

2π

(δl)2dα. (2.18)

Assumption:  

Raychaudhuri Eq  Raychaudhuri Eq  Raychaudhuri Eq  Raychaudhuri Eq  

1) R = αρ     （clumpiness)
2) σ^2 = Negligible  

FLRW
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L ensing statistics.ÈThe di†erential probability of lensing
events is & Gunn(Press 1973 ; SEF)

dq \ pn
L

dl , (2)

where is the number density of the lens, dl is the physicaln
Llength of the depth, and p is the cross section proportional

to Here is the angular diameter distanceD
OL

D
LS

/D
OS

. D
OLfrom the observer to the lens. Since dl depends only on the

cosmological parameters in the FLRW universe, we investi-
gate the combination in order to take accountD

OL
D

LS
/D

OSof the clumpiness of the matter.
T ime delay.ÈThe time delay between two images A and

B is written as (Refsdal 1964b ; SEF)

*t
AB

\ 1 ] z
L

c
D

OL
D

OS
D

LS

P
A

B
dh É

Ca
A

] a
B

2
[ a(h)

D
, (3)

where and are the bending angles at the images A anda
A

a
BB, respectively.

3. DR DISTANCES

The DR angular diameter distance is determined by
(DR73; SEF; Sasaki 1993)

d2
dw2 D ] 3

2
(1 ] z)5a)D \ 0 , (4)

where the parameter a represents the clumpiness of the
matter along the light ray. In the FLRW universe, a is unity,
while a vanishes when the light ray propagates through the
empty space. Here w is an affine parameter, which is
assumed to be that in the FLRW universe, determined by

dz
dw

\ (1 ] z)2J)z(1 ] z)2 [ jz(2 ] z) ] (1 ] z)2 , (5)

where ) and j denote the density parameter and the cosmo-
logical constant, respectively. Since the coefficient of the last
term of equation 3a)/2, comes from the Ricci focusing(4),
by the matter along the line of sight, the DR angular diam-
eter distance is a decreasing function of a for a Ðxed redshift

That is to say(DR73; SEF).

D
OL

(a1) [ D
OL

(a2) for a1 \ a2 . (6)

In reality, the parameter a takes various values according to
mass distribution. For instance, it can take a rather low
value such as 0.5 in the clump model et al.(Kasai 1990 ;
Linder 1998).

The DR equation must be solved under the boundary(4)
conditions

D(z1, z1) \ 0 (7)

and

d
dz2

D(z1, z2)
K
z2/z1

\ a(z1)
c

H(z1)
, (8)

where and denote the scale factor and thea(z1) H(z1)
Hubble constant at respectively.z1,

4. MONOTONIC PROPERTIES

has been shown that the distance ratioD
LS

/D
OS

.ÈIt
satisÐesD

LS
/D

OS
(Asada 1997)

D
LS

D
OS

(a1) \ D
LS

D
OS

(a2) for a1 \ a2 . (9)

This is proved as follows. For Ðxed ), and j, the ratioz
S
,

can be considered as a function of WeD
LS

/D
OS

z
L
, Xa(zL

).
deÐne as where is the DR distance fromYa(zL

) D
SL

/D
OS

, D
SLthe source to the lens. Owing to the reciprocity we(SEF),

obtain

Ya(zL
) \ 1 ] z

S
1 ] z

L
Xa(zL

) . (10)

Since depends on only through it obeys the DRYa z
L

D
SL

,
equation

d2
dw

L
2 Ya(zL

) ] 3
2

(1 ] z
L
)5a)Ya(zL

) \ 0 , (11)

where is an affine parameter at the lens. We deÐne thew
LWronskian as

W (Ya1, Ya2) \A
Ya1

dYa2
dw

L
[ Ya2

dYa1
dw

L

B
. (12)

Using equation we obtain(11),

d
dw

L
W (Ya1, Ya2) \ 0 for a1 \ a2 . (13)

Since both and vanish at we obtainYa1 Ya2 z
L

\ z
S
,

W [Ya1(zS
), Ya2(zS

)] \ 0 . (14)

From equations and we Ðnd(13) (14),

W (Ya1, Ya2) [ 0 , (15)

where we used the fact that the affine parameter w deÐned
by equation is an increasing function of z. Equation(5) (15)
is rewritten as

d
dw

L
ln

Ya2
Ya1

[ 0 . (16)

Since always becomes at the observer, we ÐndYa 1 ] z
S

ln
Ya2(zL

\ 0)
Ya1(zL

\ 0)
\ 0 . (17)

From equations and we obtain(16) (17),

ln
Ya2
Ya1

[ 0 . (18)

This leads to

Xa2
Xa1

[ 1 , (19)

where we used equation Thus, equation is proved.(10). (9)
It should be noted that equation holds even if one(18)

uses the opposite sign in the deÐnition of the affine param-
eter in equation From equations and the image(5). (1) (9),
separation, as well as the e†ective bending angle, increases
with a.

let us prove thatD
OL

D
LS

/D
OS

.ÈNext D
OL

D
LS

/D
OSincreases monotonically with a. We Ðx ), j, and Thenz

L
, z

S
.

it is crucial to notice that the distance from the lens to the
source can be expressed in terms of the distance function
from the observer, D(z), as (Linder 1988)

D
LS

\ c
H0

(1 ] z
L
)D

OL
D

OS
P
wL

wS dw
D(z)2 , (20)
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Inequalities  
      in Observables

HA, ApJ 485, 460 (1997); 501, 473 (98)

Monotonicity:  
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3.3. Monotonic properties
It is assumed that the affine parameter in the Dyer-Roeder distance is the same as

that in the FLRW universe, 11), 25) namely Eq. (2.26). Since α represents the strength
of the Ricci focusing along the line of sight, the DR angular diameter distance is a
decreasing function of α for a fixed redshift; 12) that is to say,

DOL(α1) > DOL(α2) for α1 < α2. (3.4)

(1) DLS/DOS

It has been shown that the distance ratio DLS/DOS satisfies 36)

DLS

DOS
(α1) <

DLS

DOS
(α2) for α1 < α2. (3.5)

This is shown as follows. For fixed zS, Ω0 and λ0, the ratio DLS/DOS can be
considered as a function of zL, Xα(zL). We define Yα(zL) as DSL/DOS, where DSL is
the Dyer-Roeder distance from the source to the lens. Owing to the reciprocity, 24)

we obtain
Yα(zL) =

1 + zS

1 + zL
Xα(zL). (3.6)

Since Yα depends on zL only through DSL, it obeys the equation

d2

dvL
2
Yα(zL) +

3
2
(1 + zL)5αΩ0Yα(zL) = 0, (3.7)

where vL is an affine parameter at the lens. Let us define the Wronskian as

W (Yα1 , Yα2) = Yα1

dYα2

dvL
− Yα2

dYα1

dvL
. (3.8)

Then, we obtain
d

dvL
W (Yα1 , Yα2) < 0 for α1 < α2. (3.9)

Since both Yα1 and Yα2 vanish at zL = zS, we obtain

W (Yα1(zS), Yα2(zS)) = 0. (3.10)

From Eqs. (3.9) and (3.10), we find

W (Yα1, Yα2) > 0, (3.11)

where we used the fact that the affine parameter v defined by Eq. (2.26) is an
increasing function of z. Equation (3.11) can be rewritten as

d

dvL
ln

Yα2

Yα1

> 0. (3.12)

Since Yα always becomes 1 + zS at the observer, we find

ln
Yα2(zL = 0)
Yα1(zL = 0)

= 0. (3.13)
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ABSTRACT
We discuss how inhomogeneities of the universe a†ect observations of the gravitational lensing : (1) the

bending angle, (2) the lensing statistics, and (3) the time delay. In order to take account of the inhomoge-
neities, the so-called Dyer-Roeder distance is used, which includes a parameter representing the clumpi-
ness of the matter along the line of sight. It is shown analytically that all three combinations of distances
appearing in the above observations, (1)È(3), are monotonic with respect to the clumpiness in general for
any given set of the density parameter, cosmological constant, and redshifts of the lens and the source.
Some implications of this result for the observations are presented ; the clumpiness decreases both the
bending angle and the lensing event rate, while it increases the time delay. We also discuss cosmological
tests using the gravitational lensing in the clumpy universe.
Subject headings : cosmology : theory È gravitational lensing

1. INTRODUCTION

It is one of the most important long-standing problems to
determine the cosmological parameters (Weinberg 1972 ;

There are some methods to determine thePeebles 1993).
cosmological parameters by using gravitational lenses
(Refsdal & Gunn1964a, 1964b, 1966 ; Press 1973 ; Blandford
& Narayan Futamase, & Kasai1986 ; Fukugita, 1990 ;

et al. Ehlers, & Falco here-Fukugita 1992 ; Schneider, 1992,
after Most of them can be classiÐed into the followingSEF).
three typical observations : (1) the bending angle, (2) the
lensing statistics, and (3) the time delay. It is of great impor-
tance to clarify the relation between the observation in the
realistic universe and the determination of the cosmological
parameters. In particular, it has been discussed that inho-
mogeneities of the universe may a†ect the cosmological
tests & Slysh(Zeldovich 1964 ; Dashevskii 1966 ; Kantowski

Dyer & Roeder hereafter Schnei-1969 ; 1972, 1973, DR73;
der & Weiss &1988a, 1988b ; Linder 1988 ; Futamase
Sasaki Futamase, & Takahara1989 ; Kasai, 1990 ;

& Schneider Sasaki, &Bartelmann 1991 ; Watanabe,
Tomita In this paper we use the so-1992 ; Sasaki 1993).
called Dyer-Roeder (DR) angular diameter distance in
order to take account of the inhomogeneities (DR73).
Besides the three parameters (the Hubble constant, the
density parameter, and the cosmological constant), the DR
distance contains an extra parameter representing the clum-
piness of the matter along the line of sight. Two extreme
cases can be represented by the DR distance ; one is the
distance in the Friedmann-Lemaitre-Robertson-Walker
(FLRW) universe, the so-called Ðlled beam, while the other
is that of the so-called empty beam when the right ray
propagates through the empty region. For comparison with
the Ðlled beam, the empty beam has been frequently and
numerically used in the literature (e.g., et al.Fukugita 1990 ;

et al. However, it has not been clariÐedFukugita 1992).
whether the observed quantities and/or the cosmological
parameters obtained in the arbitrary case of the clumpiness
parameter are bounded between those for the Ðlled beam
and the empty beam. Moreover, some cases of clumpiness
parameter have been investigated numerically for Ðxed red-
shifts of the lens and the source (e.g., & AndersonAlcock

However, the e†ect of the clumpiness on the observ-1985).

1 Present address : Faculty of Science and Technology, Hirosaki
University, Hirosaki 036-8561, Japan ; asada=phys.hirosaki-u.ac.jp.

able depends on the redshifts of the lens and the source.
Therefore, it is important to clarify how the observation of
gravitational lensing depends on all the parameters (the
density parameter, cosmological constant, clumpiness
parameter, and redshifts of the lens and the source), since
the dependence seems complicated. Hence, we investigate
analytically the arbitrary case of the clumpiness parameter,
for any set of the density parameter, cosmological constant,
and redshifts of the lens and the source.

This paper is organized as follows. introducesSection 2
three types of distance combinations appearing in the gravi-
tational lensing observations (1)È(3). shows theSection 3
basic equations for the DR distance. presents theSection 4
proof that all these distance combinations are monotonic
functions of the clumpiness parameter. We also clarify the
e†ect of the clumpiness on observations 1È3. In we° 5
discuss how the clumpiness a†ects the determination of the
cosmological parameters. Conclusions are summarized in °
6.
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location of the critical line & Narayan(Blandford 1986 ;
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OSthe discussion of the observation concerning the angle. It

has been argued that, in calculating the bending angle, the
density along the line of sight should be subtracted from the
density of the lens object However, we(Sasaki 1993).
assume that the density of the lens is much larger than that
along the line of sight, so that the e†ect of the clumpiness on
a can be ignored. Thus, we consider only the ratio D
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ABSTRACT
We discuss how inhomogeneities of the universe a†ect observations of the gravitational lensing : (1) the

bending angle, (2) the lensing statistics, and (3) the time delay. In order to take account of the inhomoge-
neities, the so-called Dyer-Roeder distance is used, which includes a parameter representing the clumpi-
ness of the matter along the line of sight. It is shown analytically that all three combinations of distances
appearing in the above observations, (1)È(3), are monotonic with respect to the clumpiness in general for
any given set of the density parameter, cosmological constant, and redshifts of the lens and the source.
Some implications of this result for the observations are presented ; the clumpiness decreases both the
bending angle and the lensing event rate, while it increases the time delay. We also discuss cosmological
tests using the gravitational lensing in the clumpy universe.
Subject headings : cosmology : theory È gravitational lensing

1. INTRODUCTION

It is one of the most important long-standing problems to
determine the cosmological parameters (Weinberg 1972 ;

There are some methods to determine thePeebles 1993).
cosmological parameters by using gravitational lenses
(Refsdal & Gunn1964a, 1964b, 1966 ; Press 1973 ; Blandford
& Narayan Futamase, & Kasai1986 ; Fukugita, 1990 ;

et al. Ehlers, & Falco here-Fukugita 1992 ; Schneider, 1992,
after Most of them can be classiÐed into the followingSEF).
three typical observations : (1) the bending angle, (2) the
lensing statistics, and (3) the time delay. It is of great impor-
tance to clarify the relation between the observation in the
realistic universe and the determination of the cosmological
parameters. In particular, it has been discussed that inho-
mogeneities of the universe may a†ect the cosmological
tests & Slysh(Zeldovich 1964 ; Dashevskii 1966 ; Kantowski

Dyer & Roeder hereafter Schnei-1969 ; 1972, 1973, DR73;
der & Weiss &1988a, 1988b ; Linder 1988 ; Futamase
Sasaki Futamase, & Takahara1989 ; Kasai, 1990 ;

& Schneider Sasaki, &Bartelmann 1991 ; Watanabe,
Tomita In this paper we use the so-1992 ; Sasaki 1993).
called Dyer-Roeder (DR) angular diameter distance in
order to take account of the inhomogeneities (DR73).
Besides the three parameters (the Hubble constant, the
density parameter, and the cosmological constant), the DR
distance contains an extra parameter representing the clum-
piness of the matter along the line of sight. Two extreme
cases can be represented by the DR distance ; one is the
distance in the Friedmann-Lemaitre-Robertson-Walker
(FLRW) universe, the so-called Ðlled beam, while the other
is that of the so-called empty beam when the right ray
propagates through the empty region. For comparison with
the Ðlled beam, the empty beam has been frequently and
numerically used in the literature (e.g., et al.Fukugita 1990 ;

et al. However, it has not been clariÐedFukugita 1992).
whether the observed quantities and/or the cosmological
parameters obtained in the arbitrary case of the clumpiness
parameter are bounded between those for the Ðlled beam
and the empty beam. Moreover, some cases of clumpiness
parameter have been investigated numerically for Ðxed red-
shifts of the lens and the source (e.g., & AndersonAlcock

However, the e†ect of the clumpiness on the observ-1985).

1 Present address : Faculty of Science and Technology, Hirosaki
University, Hirosaki 036-8561, Japan ; asada=phys.hirosaki-u.ac.jp.
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3.3. Monotonic properties
It is assumed that the affine parameter in the Dyer-Roeder distance is the same as

that in the FLRW universe, 11), 25) namely Eq. (2.26). Since α represents the strength
of the Ricci focusing along the line of sight, the DR angular diameter distance is a
decreasing function of α for a fixed redshift; 12) that is to say,

DOL(α1) > DOL(α2) for α1 < α2. (3.4)

(1) DLS/DOS

It has been shown that the distance ratio DLS/DOS satisfies 36)

DLS

DOS
(α1) <

DLS

DOS
(α2) for α1 < α2. (3.5)

This is shown as follows. For fixed zS, Ω0 and λ0, the ratio DLS/DOS can be
considered as a function of zL, Xα(zL). We define Yα(zL) as DSL/DOS, where DSL is
the Dyer-Roeder distance from the source to the lens. Owing to the reciprocity, 24)

we obtain
Yα(zL) =

1 + zS

1 + zL
Xα(zL). (3.6)

Since Yα depends on zL only through DSL, it obeys the equation

d2

dvL
2
Yα(zL) +

3
2
(1 + zL)5αΩ0Yα(zL) = 0, (3.7)

where vL is an affine parameter at the lens. Let us define the Wronskian as

W (Yα1 , Yα2) = Yα1

dYα2

dvL
− Yα2

dYα1

dvL
. (3.8)

Then, we obtain
d

dvL
W (Yα1 , Yα2) < 0 for α1 < α2. (3.9)

Since both Yα1 and Yα2 vanish at zL = zS, we obtain

W (Yα1(zS), Yα2(zS)) = 0. (3.10)

From Eqs. (3.9) and (3.10), we find

W (Yα1, Yα2) > 0, (3.11)

where we used the fact that the affine parameter v defined by Eq. (2.26) is an
increasing function of z. Equation (3.11) can be rewritten as

d

dvL
ln

Yα2

Yα1

> 0. (3.12)

Since Yα always becomes 1 + zS at the observer, we find

ln
Yα2(zL = 0)
Yα1(zL = 0)

= 0. (3.13)
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From Eqs. (3.12) and (3.13), we obtain

Yα2

Yα1

> 1. (3.14)

Thus, from Eq. (3.6), Eq. (3.5) is proved.
From Eqs. (3.1) and (3.5), we see that the image separation as well as the effective

bending angle increases with α.
(2) DOLDLS/DOS

Next let us prove that DOLDLS/DOS increases monotonically with α. We fix Ω,
λ, zL and zS. Then it is crucial to note that the distance from the lens to the source
can be expressed in terms of the distance function from the observer, D(z), as 38)

DLS =
c

H0
(1 + zL)DOLDOS

∫ vS

vL

dv

D(z)2
, (3.15)

where H0 is the Hubble constant at present. This can be rewritten as

DOLDLS

DOS
(α) =

c

H0
(1 + zL)DOL

2
∫ vS

vL

dv

D(z)2
. (3.16)

The right-hand side of this equation depends on α only through DOL/D(z). Follow-
ing reasoning similar to that used in the proof of Eq. (3.5), we obtain for zL < z < zS

DOL

D(z)
(α1) <

DOL

D(z)
(α2) for α1 < α2. (3.17)

From Eqs. (3.16) and (3.17), we obtain

DOLDLS

DOS
(α1) <

DOLDLS

DOS
(α2) for α1 < α2. (3.18)

Therefore, the gravitational lensing event rate increases with α.
(3) DLS/DOLDOS

Finally, we investigate the combination of distances appearing in the time delay.
Dividing Eq. (3.4) by Eq. (3.5), we obtain

DOLDOS

DLS
(α1) >

DOLDOS

DLS
(α2) for α1 < α2. (3.19)

Thus, the time delay decreases with α.
As shown above, the three types of combinations of distances are monotonic func-

tions of the clumpiness parameter. However, some of other combinations of distances
are not monotonic functions of α, though these combinations may not be necessarily
related with the observation. For instance, the combination DLS/

√

cDOS/H0 is not
a monotonic function of α.

3.4. Implications for cosmological tests
We consider three types of the cosmological test which use combinations of

distances appearing in gravitational lensing. Let us fix the density parameter in
order to discuss constraints on the cosmological constant.
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As shown above, the three types of combinations of distances are monotonic func-
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We consider three types of the cosmological test which use combinations of
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3.3. Monotonic properties
It is assumed that the affine parameter in the Dyer-Roeder distance is the same as

that in the FLRW universe, 11), 25) namely Eq. (2.26). Since α represents the strength
of the Ricci focusing along the line of sight, the DR angular diameter distance is a
decreasing function of α for a fixed redshift; 12) that is to say,

DOL(α1) > DOL(α2) for α1 < α2. (3.4)

(1) DLS/DOS

It has been shown that the distance ratio DLS/DOS satisfies 36)

DLS

DOS
(α1) <

DLS

DOS
(α2) for α1 < α2. (3.5)

This is shown as follows. For fixed zS, Ω0 and λ0, the ratio DLS/DOS can be
considered as a function of zL, Xα(zL). We define Yα(zL) as DSL/DOS, where DSL is
the Dyer-Roeder distance from the source to the lens. Owing to the reciprocity, 24)

we obtain
Yα(zL) =

1 + zS

1 + zL
Xα(zL). (3.6)

Since Yα depends on zL only through DSL, it obeys the equation

d2

dvL
2
Yα(zL) +

3
2
(1 + zL)5αΩ0Yα(zL) = 0, (3.7)

where vL is an affine parameter at the lens. Let us define the Wronskian as

W (Yα1 , Yα2) = Yα1

dYα2

dvL
− Yα2

dYα1

dvL
. (3.8)

Then, we obtain
d

dvL
W (Yα1 , Yα2) < 0 for α1 < α2. (3.9)

Since both Yα1 and Yα2 vanish at zL = zS, we obtain

W (Yα1(zS), Yα2(zS)) = 0. (3.10)

From Eqs. (3.9) and (3.10), we find

W (Yα1, Yα2) > 0, (3.11)

where we used the fact that the affine parameter v defined by Eq. (2.26) is an
increasing function of z. Equation (3.11) can be rewritten as

d

dvL
ln

Yα2

Yα1

> 0. (3.12)

Since Yα always becomes 1 + zS at the observer, we find

ln
Yα2(zL = 0)
Yα1(zL = 0)

= 0. (3.13)



Monotonic in Lambda-term 
--- Competing 

                with clumpliness

164 K. Tomita, H. Asada and T. Hamana

(1) DLS/DOS

The following relation holds:

DLS

DOS
(λ1) <

DLS

DOS
(λ2) for λ1 < λ2. (3.20)

This is shown as follows. Let us define

Xλ(zL) =
DLS(α, Ω0, λ)
DOS(α, Ω0, λ)

(3.21)

and
Yλ(zL) =

DSL(α, Ω0, λ)
DOS(α, Ω0, λ)

. (3.22)

By the reciprocity, 24) we obtain

Yλ(zL) =
1 + zS

1 + zL
Xλ(zL), (3.23)

which satisfies
d2

dvL
2 Yλ(zL) +

3
2
(1 + zL)5αΩ0Yα(zL) = 0. (3.24)

For λi (i = 1, 2), the affine parameter vi satisfies

dzL

dvi
= (1 + zL)2

√

Ω0zL(1 + zL)2 − λizL(2 + zL) + (1 + zL)2. (3.25)

We define the Wronskian as

W (Yλ1 , Yλ2) = Yλ1

dYλ2

dv2
− Yλ2

dYλ1

dv1
. (3.26)

Then, using Eq. (3.24), we obtain

d

dzL
W (Yλ1 , Yλ2) < 0 for λ1 < λ2. (3.27)

Since Yλ always vanishes at zL = zS, we also obtain

W (Yλ1(zS), Yλ2(zS)) = 0. (3.28)

From Eqs. (3.27) and (3.28), we find

W (Yλ1 , Yλ2) > 0 for λ1 < λ2, (3.29)

which can be rewritten as
d

dzL
ln

Yλ2

Yλ1

> 0 for λ1 < λ2. (3.30)

Since Yλ always becomes 1 + zS at the observer, we have

ln
Yλ2(zL = 0)
Yλ1(zL = 0)

= 0. (3.31)
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Finally, from Eqs. (3.30) and (3.31), we obtain
Yλ2

Yλ1

> 1 for λ1 < λ2. (3.32)

Thus, Eq. (3.20) is proved.
Equations (3.5) and (3.20) imply that, in a cosmological test using the bending

angle, the cosmological constant estimated by use of the distance formula in the
FLRW universe is always less than that estimated by use of the Dyer-Roeder distance
(0 ≤ α < 1).
(2) DOLDLS/DOS

Multiplying Eq. (3.20) by

DOL(λ1) < DOL(λ2) for λ1 < λ2, (3.33)

we obtain
DOLDLS

DOS
(λ1) <

DOLDLS

DOS
(λ2) for λ1 < λ2. (3.34)

Equation (3.33) can be proved, for instance, in the following manner: The Dyer-
Roeder distance is written as the integral equation 26), 38)

D(z; α) = D(z; α = 1) +
∞
∑

i=1

[3
2

c

H0
(1 − α)Ω

]i ∫ z

0
dyKi(y, z)D(y; α = 1), (3.35)

where Ki(y, z) is defined as

K1(x, y) =
dv

dz

∣

∣

∣

∣

z=x
(1 + x)4D(x, y; α = 1) (3.36)

and
Ki+1(x, y) =

∫ y

x
dzK1(x, z)Ki(z, y). (3.37)

From Eqs. (3.36) and (3.37), it is shown that for x < y

Ki(x, y; λ1) < Ki(x, y; λ2) for λ1 < λ2, (3.38)

where we have used the relation

D(x, y; α = 1, λ1) < D(x, y; α = 1, λ2) for λ1 < λ2, (3.39)

applicable in the FLRW universe. Using Eqs. (3.35), (3.38) and (3.39), and the
positivity of Ki, we obtain Eq. (3.33).

From Eqs. (3.18) and (3.34), it is found that, in a cosmological test using the
lensing events rate, the cosmological constant is always underestimated by use of the
distance formula in the FLRW universe.
(3) DLS/DOLDOS

When the time delay is measured and the lens object is observed, DOLDOS/DLS

can be determined from Eq. (3.3). On the other hand, when we denote the dimen-
sionless distance between z1 and z2 as d12 = H0D12/c, which does not depend on
the Hubble constant, we obtain

DOLDOS

DLS
=

c

H0

dOLdOS

dLS
. (3.40)
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Distances play important roles in cosmological observations, especially in gravitational
lens systems, but there is a problem in determining distances because they are defined
in terms of light propagation, which is influenced gravitationally by the inhomogeneities
in the universe. In this paper we first give the basic optical relations and the definitions
of different distances in inhomogeneous universes. Next we show how the observational
relations depend quantitatively on the distances. Finally, we give results for the frequency
distribution of different distances and the shear effect on distances obtained using various
methods of numerical simulation.

§1. Introduction

In optical relations among observed quantities, distances such as the luminos-
ity distance and the angular diameter distances play an important role. They are
clearly defined in the homogeneous Friedmann-Lemaitre-Robertson-Walker model
(Weinberg, 1) Schneider et al. 2)) owing to the simple nature of light propagation in
this case. In inhomogeneous universes, however, their behavior is complicated, due
to gravitational lens effect which implies that light rays are deflected gravitationally
by an inhomogeneous matter distribution. On the other hand, we also use distances
to interpret the structure of gravitationally lensed systems.

To correctly treat distances in inhomogeneous universes, it is necessary first to
have a reasonable formulation for the dynamics describing local matter motion and
optics and clarify the validity condition of the formulation. A set of fluid dynamical
equations and the Poisson equation in the cosmological Newtonian approximation
was introduced and discussed by Nariai 3) and Irvine 4) under the conditions

|Φ| ! 1, (v/c)2 ! 1, L/LH ! 1, (1.1)

where Φ, v, L and LH are the Newtonian gravitational potential, matter velocity,
the characteristic size of inhomogeneities and the horizon size ≈ ct, respectively, and
the spacetime is expressed as

ds2 = −(1 + 2Φ)c2dt2 + (1 − 2Φ)a2(t)[dχ2 + σ2(χ)dΩ2], (1.2)

where a(t) is the scale-factor, σ(χ) = sin χ, χ, sinhχ for the background curvature
∗) E-mail address: tomita@yukawa.kyoto-u.ac.jp

∗∗) E-mail address: asada@phys.hirosaki-u.ac.jp
∗∗∗) E-mail address: hamana@astr.tohoku.ac.jp
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where the factor (1 − 2Φ) has been neglected, because |Φ| " 1 locally. The above
expression can be rewritten by use of yi (≡ a0xi/R0) as

DlA =
R0

(1 + z)F
(∆y)⊥/θ, (4.5)

where F ≡ 1 − 1
4(R0H0/c)2(1 − Ω0 − λ0)(y)2, a0 = a(t0) and R0 ≡ L0/N1/3.

On the other hand, the area angular diameter distance DaA is given as follows,
using three rays (ray 1, ray 2 and ray 3) received by the observer, such that on the
observer plane the two lines between ray 1 and ray 2, and between ray 1 and ray
3 are orthogonal and have the same lengths (equal to the separation angle θ). If
(∆x)⊥(12), (∆x)⊥(13) and (∆x)⊥(23) are the components of the deviation vectors
(between ray 1 and ray 2, between ray 1 and ray 3 and between ray 2 and ray 3)
perpendicular to the central direction of the rays, we obtain

DaA = a(t)[(∆x)⊥(12) · (∆x)⊥(13)]1/2
[

1 +
1
4
K(x)2

]−1

/θ. (4.6)
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Fig. 1. The percentage (100N(α)/N) of the
distribution of α in bins with the inter-
val ∆α = 0.4, for DlA in the lens model 1
and model S with (Ω0, λ0) = (1.0, 0). Re-
sults for z = 0.5, 1, 2, 3, 4 and 5 are denoted
by dot-long dashed, dot-short dashed, long
dashed, short dashed, dotted and solid
lines, respectively.
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Fig. 2. The percentage (100N(α)/N) of the
distribution of α in bins with the interval
∆α = 0.4, for DlA in the lens model 2 and
model S with (1.0, 0). The lines have the
same meaning as in Fig. 1.
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3 are orthogonal and have the same lengths (equal to the separation angle θ). If
(∆x)⊥(12), (∆x)⊥(13) and (∆x)⊥(23) are the components of the deviation vectors
(between ray 1 and ray 2, between ray 1 and ray 3 and between ray 2 and ray 3)
perpendicular to the central direction of the rays, we obtain

DaA = a(t)[(∆x)⊥(12) · (∆x)⊥(13)]1/2
[

1 +
1
4
K(x)2

]−1

/θ. (4.6)
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Fig. 1. The percentage (100N(α)/N) of the
distribution of α in bins with the inter-
val ∆α = 0.4, for DlA in the lens model 1
and model S with (Ω0, λ0) = (1.0, 0). Re-
sults for z = 0.5, 1, 2, 3, 4 and 5 are denoted
by dot-long dashed, dot-short dashed, long
dashed, short dashed, dotted and solid
lines, respectively.
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Fig. 2. The percentage (100N(α)/N) of the
distribution of α in bins with the interval
∆α = 0.4, for DlA in the lens model 2 and
model S with (1.0, 0). The lines have the
same meaning as in Fig. 1.
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through a better understanding of the phenomenology of the

light curves. Frieman’s estimates are consistent with those of

Wambsganss et al. !15".
Our approach can be used to obtain the spread in image

magnification #and, hence, amplification$ of a standard

candle at any given redshift, for any given cosmological pa-

rameters, and any choice of inhomogeneous distributions of

matter. According to our conjecture in Sec. III D, randomly

distributed point masses should provide the most noise

and/or bias, and so it is particularly instructive to examine

that case. Furthermore, as discussed in Secs. II and III, this

case should provide a realistic description of lensing phe-

nomena in our universe if most of the matter in the universe

is clumped into stars and/or MACHOs of mass 10!3 M! or

greater.

Consider, first, the case of a universe with %"1 and &
"0 filled with randomly distributed point masses. A plot of
area versus percentage of photon beams at z"0.5 was pre-
viously given in Fig. 2. We wish to convert this figure into a

probability distribution for the apparent luminosity of a

‘‘standard candle’’ source randomly placed on a sphere of

radius D centered on us, corresponding to z"0.5. As we
argued in Sec. III C, each source should have exactly one

primary image. It is straightforward to obtain the probability

distribution for the apparent luminosity of this primary

image—and we shall do so below. However, as discussed in

Sec. III C, we do not have a good way of determining which

secondary images are associated with a given primary image,

and so we cannot directly obtain the probability distribution

for the total apparent luminosity associated with a source.

See note added in proof in Sec. III C. This is not a very

serious problem in the present case, since Fig. 2 shows that

less than 5% of the photon beams #as measured in the
‘‘present sky’’$ have undergone a caustic by z"0.5, so that
less than 5% of the total expected luminosity of the sources

at z"0.5 will be carried in secondary images. Undoubtedly,
most of the luminosity carried by the secondary images will

be associated with sources whose primary images are

strongly lensed. Thus, if the primary and secondary images

of a source cannot be resolved #as would be the case for
microlensing by stars$, the effect of including the secondary
images should be merely to further brighten a few of the

sources with the brightest primary images. Thus, the prob-

ability distribution we give below for the apparent luminos-

ity of the primary images should be accurate for the total

luminosity, except for the brightest sources.

To convert Fig. 2 to a probability distribution for apparent

luminosity for the primary image of a randomly placed

source, we proceed as follows. Let pz(A)dA denote the

probability that a beam—which is randomly chosen with re-

spect to the ‘‘present sky’’—will have area between A and

A#dA at redshift z . Up to normalization, p1/2(A) is just the

inverse of the slope of the curve plotted in Fig. 2. Let

Pz(A)dA denote the probability that a source which is ran-

domly placed on a sphere centered about us of radius D,

corresponding to redshift z, will be ‘‘hit’’ by a beam with

area between A and A#dA which has not undergone a caus-

tic. Then, as previously mentioned in Sec. III C above, we

have

Pz#A $'Apz#A $. #55$

Since the apparent luminosity, L, of the source is propor-
tional to 1/A , the probability distribution, Pz(L), for appar-
ent luminosity is given by

Pz#L$'L!2Pz#1/L$'L!3pz#1/L$, #56$

where we have normalized both the beam area and intrinsic

luminosity so that both A and L would have unit value at

redshift z in the underlying Robertson-Walker model. The

probability distribution, P1/2(L), is plotted in Fig. 17, using
the data from Fig. 2 to determine p1/2(A).

It should be noted that, since at any z we have pz(0)

(0, it follows from Eq. #56$ that as L→) , we have, at all z,

P#L$'1/L 3. #57$

Consequently, P#L$ is normalizable #as it must be$ and has a
well defined first moment !since, as mentioned in Sec. IV B,
the total expected apparent luminosity #including the second-
ary as well as primary images$ must agree with that of the
underlying Robertson-Walker model". However, its second

FIG. 17. The probability distribution, P#L$, for the apparent
luminosity, L, of a ‘‘standard candle’’ for an %"1, &"0 universe
with point mass galaxies, at a redshift of 1/2. The absolute lumi-

nosity of the standard candle has been normalized to yield an ap-

parent luminosity of 1 in the underlying Robertson-Walker model.

The probability distribution shown is for primary images only; in-

clusion of the flux from secondary images presumably would

mainly increase the luminosity of the most luminous primary im-

ages #which are off the scale of this plot$, and should not signifi-
cantly affect this figure. #Note that, according to Fig. 2, approxi-
mately 5% of the total luminosity is carried by secondary images.$
The vertical dashed line represents the empty beam apparent lumi-

nosity, which is the minimum possible apparent luminosity for pri-

mary images. This empty beam apparent luminosity corresponds to

a Robertson-Walker model with %0"0.6 and &"0. The vertical
dotted lines show the lower and upper 16% of this probability dis-

tribution, to give an indication of what one might roughly view as

‘‘one sigma’’ errors in this highly non-Gaussian distribution with

infinite second moment. The % values corresponding to these lines

also are shown.
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063501-20

Holz, Wald (1998)

though more are demagnified...
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Fig. 9. The scale parameter θ is depicted as a function of the source redshift.

Fig. 10. MPDF for the lens model (b) at zS = 1.2 is shown. Values of R
p

H0/ML of clumps
are distributed uniformly within 6 ≤ R

p
H0/ML ≤ 10. The smooth lines are the gamma

distributions that fit the MPDFs.

calculated MPDFs for various values of the source redshift and R/
√

ML. We found
that the resultant MPDFs can be categorized into two groups according to whether
the gamma distributions fit well the MPDFs or not. In the case of the lens models
that have smooth density profiles, the gamma distributions fit well the MPDFs if
R

√
H0/ML is sufficiently large. Furthermore, we have found that this result holds

Recent, more sophistcated work

Yoo, Ishihara, Nakao, Tagoshi (2008)
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Fig. 9. OGLE-III light curves (Udalski et al. 2006) of all four
quasar images from April 2004 to December 2006 (dots),
compared with the photometry derived by integrating our
VLT spectra through the OGLE V-band (dark triangles). The
1−sigma error bars correspond to the photon noise in the
spectrum. We shift the OGLE-III light curve of image D by
−0.5 mag with respect to the published values. The bottom
panel displays the seeing values for each observations.

epochs, and of B and C on 28 different epochs. Several ex-
tracted spectra of image A are shown in Fig.6. As a sanity
check, we compared our results with the OGLE-III photomet-
ric monitoring of QSO 2237+0305 (Udalski et al. 2006). We
integrated our quasar spectra in the corresponding V-band to
estimate, from the spectra, the photometric light curves as if
they were obtained from imaging. In Fig. 9, we compare our
magnitude estimates with the actual OGLE-III measurements.
The overall agreement is very good for images A, B, and C.
For image D, we have to shift the OGLE-III light curve by
−0.5 mag with respect to the published values. Interestingly,
this shift is not needed when we compare our results with the
previous OGLE data from the provisional calibration presented
in the years 2004−2006. The previous OGLE data also agreed
with the photometry of Koptelova et al. (2005). This changed
when Udalski et al. (2006) reviewed their calibration and gave
image D a larger magnitude of approximately 0.5 mag. They
stated that the steep rise of brightness of image D at the end
of the 2000 OGLE-II season leaded to an overestimate of the
extrapolated magnitude for the beginning of the 2001 OGLE-
III season. But this is now discrepant with the photometry of
Koptelova et al. (2005). We think that the new extrapolation of
the light curve of image D from the end of season 2000 to the
beginning of season 2001 might be uncertain, leading to the
observed shift between our data and the OGLE-III light curve

of image D. However, aside from this shift, the agreement be-
tween the OGLE photometry and our integrated VLT spectra is
also very good for image D.

4. Multi-component decomposition

Different emission features are known to be produced in re-
gions of different characteristic sizes. As microlensing magni-
fication varies on short spatial scales, sources of different sizes
are magnified by differing amounts (e.g. Wambsganss et al.
1990). Emission features from smaller regions of the source are
more highly variable due to microlensing than features emitted
in more extended regions. In order to study the variation of
each spectral feature independently, we need to decompose the
spectra into their individual components.

4.1. Method

In our analysis of the 1-D spectra of the four quasar images, we
follow the multi-component decomposition (MCD) approach
(Wills et al. 1985, Dietrich et al. 2003) implemented in Sluse
et al. (2007). This method is applied to the rest-frame spectra,
assuming they are the superposition of (1) a power law con-
tinuum, (2) a pseudo-continuum due to the merging of Fe II
and Fe III emission blends, and (3) an emission spectrum due
to the other individual BELs. We consider the following emis-
sion lines : C IV λ1549, He II λ1640, O III] λ1664, Al II λ1671,
Al III λ1857, Si III] λ1892, C III] λ1909, and Mg II λ2798. All
these features are fitted simultaneously to the data using a stan-
dard least-square minimization with a Levenberg-Marquardt
based algorithm adapted from the Numerical Recipes (Press
et al. 1986).

In the first step, we identify the underlying nonstellar
power-law continuum from spectral windows that are free
(or almost free) of contributions from the other components,
namely the iron pseudo-continuum and the BELs. We use the
windows 1680 ≤ λ ≤ 1710 Å and 3020 ≤ λ ≤ 3080 Å.
After visual inspection of the iron templates by Vestergaard et
al. (2001), we do not expect significant iron emission in these
windows.

We characterize the spectral continuum (measured in the
restframe) with a power law fν ∝ ν

αν , which translates in wave-
length to fλ ∝ λαλ with the relation αν = −(2 + αλ), i.e.

fλ = f0

(

λ

λ0

)αλ

= f0

(

λ

λ0

)−(2+αν )

where λ0 = 2000 Å and where αν is the commonly used canon-
ical power index.

Next, we fit the BELs with Gaussian profiles. We consider
a sum of three profiles to fit the absorption feature in the C IV
emission line. Two profiles are used for the C III] line and one
single profile is used to fit simultaneously the O III] and Al II
lines. All other BELs are fitted with one single profile. We
then subtract the BELs and the continuum from the spectra.
We consider the residuals as coming from the emission blends
of Fe II and Fe III. Hence the averaged and normalized residu-
als over all epochs define our first iron pseudo-continuum tem-

Eigenbrod et al. 
ArXiv:0709.2828

Q2237+0305 
     = Einstein Cross

Time Variability
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(Witt 90)
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2 POLYNOMIAL FORMALISM USING COMPLEX VARIABLES

We consider a lens system with N point mass. The mass and two-dimensional location of

each body is denoted as Mi and the vector Ei, respectively. For a later convenience, let us

define the Einstein ring radius angle as

θE =

√√√√4GMtotDLS
c2DLDS

, (1)

where G is the gravitational constant, c is the light speed, Mtot is the total mass
∑N

i=1 Mi and

DL, DS and DLS denote distances between the observer and the lens, between the observer

and the source, and between the lens and the source, respectively. In the unit normalised by

the Einstein ring radius angle, the lens equation becomes

β = θ −
N∑

i

νi
θ − ei

|θ − ei|2
, (2)

where β = (βx, βy) and θ = (θx, θy) denote the vectors for the position of the source and

image, respectively and we defined the mass ratio and the angular separation vector as

νi = Mi/Mtot and ei = Ei/θE = (ex, ey)

In a formalism based on complex variables, two-dimensional vectors for the source, lens

and image positions are denoted as w = βx + iβy, z = θx + iθy, and εi = ex + iey, respectively.

By employing this formalism, the lens equation is rewritten as

w = z −
N∑

i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens equation is non-analytic because

it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO AN ANALYTIC

POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −
N∑

i

νi

z − εi
. (4)

This expression can be substituted into z∗ in Eq. (3) to eliminate the complex variable z∗.

As a result, we obtain a (N2 + 1)-th order analytic polynomial equation as (Witt 1990)

(z − w)
N∏

l=1



(w∗ − ε∗l )
N∏

k=1

(z − εk) +
N∑

k=1

νk

N∏

j "=k

(z − εj)





c© 2008 RAS, MNRAS 000, 1–20

Lens Equation (Coupled) 

Vector form 
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This paper is organised as follows. In Section 2, the
complex description of gravitational lensing is briefly sum-
marised. The lens equation is embedded into a single-
complex-variable polynomial in Section 3. Perturbative
roots for the complex polynomial are presented for binary
and triple systems in sections 4 and 5, respectively. They are
extended to a case of N point lenses in section 6. In section
7, a dual-complex-variables formalism and its perturbation
scheme are developed for a binary lens for its simplicity. The
perturbation scheme is extended to a N point lens system
in section 8. Section 9 is devoted to the conclusion.

2 POLYNOMIAL FORMALISM USING
COMPLEX VARIABLES

We consider a lens system with N point masses. The mass
and two-dimensional location of each body is denoted as Mi

and the vector Ei, respectively. For the later convenience,
let us define the angular size of the Einstein ring as

θE =

√

4GMtotDLS
c2DLDS

, (1)

where G is the gravitational constant, c is the light speed,
Mtot is the total mass

∑N

i=1
Mi and DL, DS and DLS de-

note distances between the observer and the lens, between
the observer and the source, and between the lens and the
source, respectively. In the unit normalised by the angular
size of the Einstein ring, the lens equation becomes

β = θ −

N
∑

i

νi
θ − ei

|θ − ei|2
, (2)

where β = (βx, βy) and θ = (θx, θy) denote the vectors for
the position of the source and image, respectively and we
defined the mass ratio and the angular separation vector as
νi = Mi/Mtot and ei = Ei/θE = (eix, eiy).

In a formalism based on complex variables, two-
dimensional vectors for the source, lens and image positions
are denoted as w = βx+iβy , z = θx+iθy, and εi = eix+ieiy,
respectively (See also Fig. 1). By employing this formalism,
the lens equation is rewritten as

w = z −

N
∑

i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens
equation is non-analytic because it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO
AN ANALYTIC POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −

N
∑

i

νi

z − εi
. (4)

This expression can be substituted into z∗ in Eq. (3) to
eliminate the complex variable z∗. As a result, we obtain
a (N2 + 1)-th order analytic polynomial equation as (Witt

Figure 1. Notation: The source and image positions on complex
planes are denoted by w (the circle) and z (the filled disk), re-
spectively. Locations of N point masses are denoted by εi (filled
triangles) for i = 1, · · · , N . Here, we assume the thin lens approx-
imation.

1990)

(z − w)

N
∏

!=1

(

(w∗ − ε∗! )

N
∏

k=1

(z − εk) +

N
∑

k=1

νk

N
∏

j "=k

(z − εj)

)

=

N
∑

i=1

νi

N
∏

!=1

(z − ε!)

×

N
∏

m"=i

(

(w∗ − ε∗m)

N
∏

k=1

(z − εk) +

N
∑

k=1

νk

N
∏

j "=k

(z − εj)

)

.

(5)

Equation (A3) in Witt (1990) takes a rather complicated
form because of inclusion of nonzero shear γ due to sur-
rounding matter. Bayer et al. (2006) uses a complex formal-
ism in order to discuss the maximum number of images in
a configuration of point masses, by replacing one of point
deflectors by a spherically symmetric distributed mass. In
their lens equation (3) for point lenses, the plus symbol in
front of the summation symbols in the parentheses should
read minus one. Only after taking account of this typo, their
equation could agree with Eq. (5). In order to show this
agreement, one may use (−1)2N = 1 and (−1)2N−1 = −1.
It is worthwhile to mention that Eq. (5) contains not only
all the solutions for the lens equation (2) but also unphys-
ical false roots which do not satisfy Eq. (2), in price of the
manipulation for obtaining an analytic polynomial equation,
as already pointed out by Rhie (2001, 2003) and Bayer et
al. (2006). Such an inclusion of unphysical solutions can be
easily understood by remembering that we get unphysical
roots as well as true ones if one takes a square of an equa-
tion including the square root. In fact, an analogous thing
happens in another example of gravitational lenses such as
an isothermal ellipsoidal lens as a simple model of galaxies
(Asada et al. 2003).

In general, the mass ratio νi satisfies 0 < νi < 1, so that
it can be taken as an expansion parameter. Without loss of
generality, we can assume that the first lens object is the
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2 POLYNOMIAL FORMALISM USING COMPLEX VARIABLES

We consider a lens system with N point mass. The mass and two-dimensional location of

each body is denoted as Mi and the vector Ei, respectively. For a later convenience, let us

define the Einstein ring radius angle as

θE =

√√√√4GMtotDLS
c2DLDS

, (1)

where G is the gravitational constant, c is the light speed, Mtot is the total mass
∑N

i=1 Mi and

DL, DS and DLS denote distances between the observer and the lens, between the observer

and the source, and between the lens and the source, respectively. In the unit normalised by

the Einstein ring radius angle, the lens equation becomes

β = θ −
N∑

i

νi
θ − ei

|θ − ei|2
, (2)

where β = (βx, βy) and θ = (θx, θy) denote the vectors for the position of the source and

image, respectively and we defined the mass ratio and the angular separation vector as

νi = Mi/Mtot and ei = Ei/θE = (ex, ey)

In a formalism based on complex variables, two-dimensional vectors for the source, lens

and image positions are denoted as w = βx + iβy, z = θx + iθy, and εi = ex + iey, respectively.

By employing this formalism, the lens equation is rewritten as

w = z −
N∑

i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens equation is non-analytic because

it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO AN ANALYTIC

POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −
N∑

i

νi

z − εi
. (4)

This expression can be substituted into z∗ in Eq. (3) to eliminate the complex variable z∗.

As a result, we obtain a (N2 + 1)-th order analytic polynomial equation as (Witt 1990)

(z − w)
N∏

l=1



(w∗ − ε∗l )
N∏

k=1

(z − εk) +
N∑

k=1

νk

N∏

j "=k

(z − εj)





c© 2008 RAS, MNRAS 000, 1–20
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2 POLYNOMIAL FORMALISM USING COMPLEX VARIABLES

We consider a lens system with N point mass. The mass and two-dimensional location of

each body is denoted as Mi and the vector Ei, respectively. For a later convenience, let us

define the Einstein ring radius angle as

θE =

√√√√4GMtotDLS
c2DLDS

, (1)

where G is the gravitational constant, c is the light speed, Mtot is the total mass
∑N

i=1 Mi and

DL, DS and DLS denote distances between the observer and the lens, between the observer

and the source, and between the lens and the source, respectively. In the unit normalised by

the Einstein ring radius angle, the lens equation becomes

β = θ −
N∑

i

νi
θ − ei

|θ − ei|2
, (2)

where β = (βx, βy) and θ = (θx, θy) denote the vectors for the position of the source and

image, respectively and we defined the mass ratio and the angular separation vector as

νi = Mi/Mtot and ei = Ei/θE = (ex, ey)

In a formalism based on complex variables, two-dimensional vectors for the source, lens

and image positions are denoted as w = βx + iβy, z = θx + iθy, and εi = ex + iey, respectively.

By employing this formalism, the lens equation is rewritten as

w = z −
N∑

i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens equation is non-analytic because

it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO AN ANALYTIC

POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −
N∑

i

νi

z − εi
. (4)

This expression can be substituted into z∗ in Eq. (3) to eliminate the complex variable z∗.

As a result, we obtain a (N2 + 1)-th order analytic polynomial equation as (Witt 1990)

(z − w)
N∏

l=1



(w∗ − ε∗l )
N∏

k=1

(z − εk) +
N∑

k=1

νk

N∏

j "=k

(z − εj)




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behaviors of roots for the polynomial lens equation from
the viewpoint of perturbations. We shall identify unphysical
roots. Secondly, we shall re-examine the lens equation, so
that the appearance of unphysical roots can be avoided.

This paper is organised as follows. In Section 2, the
complex description of gravitational lensing is briefly sum-
marised. The lens equation is embedded into a single-
complex-variable polynomial in Section 3. Perturbative
roots for the complex polynomial are presented for binary
and triple systems in sections 4 and 5, respectively. They are
extended to a case of N point lenses in section 6. In section 7,
we re-examine the lens equation in a dual-complex-variables
formalism and its perturbation scheme for a binary lens for
its simplicity. The perturbation scheme is extended to a N
point lens system in section 8. Section 9 is devoted to the
conclusion.

2 POLYNOMIAL FORMALISM USING
COMPLEX VARIABLES

We consider a lens system with N point masses. The mass
and two-dimensional location of each body is denoted as Mi

and the vector Ei, respectively. For the later convenience,
let us define the angular size of the Einstein ring as

θE =

√
4GMtotDLS

c2DLDS
, (1)

where G is the gravitational constant, c is the light speed,
Mtot is the total mass

∑N

i=1
Mi and DL, DS and DLS de-

note distances between the observer and the lens, between
the observer and the source, and between the lens and the
source, respectively. In the unit normalised by the angular
size of the Einstein ring, the lens equation becomes

β = θ −
N∑

i

νi
θ − ei

|θ − ei|2
, (2)

where β = (βx, βy) and θ = (θx, θy) denote the vectors for
the position of the source and image, respectively and we
defined the mass ratio and the angular separation vector as
νi = Mi/Mtot and ei = Ei/θE = (eix, eiy).

In a formalism based on complex variables, two-
dimensional vectors for the source, lens and image positions
are denoted as w = βx+iβy, z = θx+iθy, and εi = eix+ieiy,
respectively (See also Fig. 1). By employing this formalism,
the lens equation is rewritten as

w = z −
N∑

i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens
equation is non-analytic because it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO
AN ANALYTIC POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −
N∑

i

νi

z − εi
. (4)

Figure 1. Notation: The source and image positions on complex
planes are denoted by w (the circle) and z (the filled disk), re-
spectively. Locations of N point masses are denoted by εi (filled
triangles) for i = 1, · · · , N . Here, we assume the thin lens approx-
imation.

This expression can be substituted into z∗ in Eq. (3) to
eliminate the complex variable z∗. As a result, we obtain
a (N2 + 1)-th order analytic polynomial equation as (Witt
1990)

(z − w)

N∏

!=1

(
(w∗ − ε∗! )

N∏

k=1

(z − εk) +

N∑

k=1

νk

N∏

j "=k

(z − εj)

)

=

N∑

i=1

νi

N∏

!=1

(z − ε!)

×
N∏

m "=i

(
(w∗ − ε∗m)

N∏

k=1

(z − εk) +

N∑

k=1

νk

N∏

j "=k

(z − εj)

)
.

(5)

Equation (A3) in Witt (1990) takes a rather complicated
form because of inclusion of nonzero shear γ due to sur-
rounding matter. Bayer et al. (2006) uses a complex formal-
ism in order to discuss the maximum number of images in a
configuration of point masses, by replacing one of point de-
flectors by a spherically symmetric distributed mass. Their
lens equation (3) agrees with Eq. (5). In order to show this
agreement, one may use (−1)N+1 = (−1)N−1. It is worth-
while to mention that Eq. (5) contains not only all the solu-
tions for the lens equation (2) but also unphysical false roots
which do not satisfy Eq. (2), in price of the manipulation
for obtaining an analytic polynomial equation, as already
pointed out by Rhie (2001, 2003) and Bayer et al. (2006).
Such an inclusion of unphysical solutions can be easily un-
derstood by remembering that we get unphysical roots as
well as true ones if one takes a square of an equation includ-
ing the square root. In fact, an analogous thing happens in
another example of gravitational lenses such as an isother-
mal ellipsoidal lens as a simple model of galaxies (Asada et
al. 2003).

In general, the mass ratio νi satisfies 0 < νi < 1, so that
it can be taken as an expansion parameter. Without loss of
generality, we can assume that the first lens object is the

c© 2008 RAS, MNRAS 000, 1–14
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image, respectively and we defined the mass ratio and the angular separation vector as

νi = Mi/Mtot and ei = Ei/θE = (ex, ey)
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and image positions are denoted as w = βx + iβy, z = θx + iθy, and εi = ex + iey, respectively.

By employing this formalism, the lens equation is rewritten as

w = z −
N∑

i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens equation is non-analytic because

it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO AN ANALYTIC

POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −
N∑

i

νi

z − εi
. (4)

This expression can be substituted into z∗ in Eq. (3) to eliminate the complex variable z∗.

As a result, we obtain a (N2 + 1)-th order analytic polynomial equation as (Witt 1990)

(z − w)
N∏

l=1



(w∗ − ε∗l )
N∏

k=1

(z − εk) +
N∑

k=1

νk

N∏

j "=k

(z − εj)




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=
N∑

i=1

νi

N∏

l=1

(z − εl)

×
N∏

m!=i



(w∗ − ε∗m)
N∏

k=1

(z − εk) +
N∑

k=1

νk

N∏

j !=k

(z − εj)



 . (5)

Equation (A3) in Witt (1990) takes a rather complicated form because of inclusion of nonzero

shear γ due to surrounding matter. Bayer et al. (2006) uses a complex formalism in order

to discuss the maximum number of images in a configuration of point masses, by replacing

one of point deflectors by a spherically symmetric distributed mass. In their lens equation

(3) for point lenses, the plus symbol in front of the summation symbols in the parentheses

should read minus one. Only after taking account of this typo, their equation could agree

with Eq. (5). In order to show this agreement, one may use (−1)2N = 1 and (−1)2N−1 = −1.

It is worthwhile to mention that Eq. (5) contains not only all the solutions for the lens

equation (2) but also fiducial unphysical roots which do not satisfy Eq. (2), in price of the

manipuration for obtaining an analytic polynomial equation, as already pointed out by Rhie

() and Bayer et al. (). Such an inclusion of unphyscal solutions can be easily understood by

remembering that we get unphysical roots as well as true ones if one takes a square of an

equation including the square root. In fact, an analogous thing happens in another example

of gravitational lenses such as an isothermal ellipsoidal lens as a simple model of galaxies

(Asada et al. 2003).

In general, the mass ratio νi satisfies 0 < νi < 1, so that it can be taken as an expansion

parameter. Without loss of generality, we can assume that the first lens object is the most

massive, nemely m1 ≥ mi for i = 2, 3, · · · , N . Thus, formal solutions are expressed in Taylor

series as

z =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

νp2
2 νp3

3 · · · νpN
N z(p2)(p3)···(pN ). (6)

Up to this point, the origin of the lens plane is arbitrary. In the following,the origin of

the lens plane is chosen as the location of the mass m1, such that one can put ε1 = 0. This

enables us to simplify some expressions and to easily understand their physical meanings,

mostly because gravity is dominated by m1 in most regions except for the vicinity of mi

(i $= 1). Namely, it is natural to treat our problem as perturbations around a single lens by

m1 (located at the origin of the coordinates).

In numerical simulation codes or practical data analysis, however, one may use the co-

ordinates in which the origin is not the location of m1. If one wishes to consider such a case
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and image positions are denoted as w = βx + iβy, z = θx + iθy, and εi = ex + iey, respectively.

By employing this formalism, the lens equation is rewritten as

w = z −
N∑
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z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens equation is non-analytic because

it contains both z and z∗.

3 EMBEDDING THE LENS EQUATION INTO AN ANALYTIC

POLYNOMIAL

The complex conjugate of Eq. (3) is expressed as

w∗ = z∗ −
N∑

i

νi

z − εi
. (4)

This expression can be substituted into z∗ in Eq. (3) to eliminate the complex variable z∗.

As a result, we obtain a (N2 + 1)-th order analytic polynomial equation as (Witt 1990)

(z − w)
N∏

l=1



(w∗ − ε∗l )
N∏

k=1

(z − εk) +
N∑
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νk
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Equation (A3) in Witt (1990) takes a rather complicated form because of inclusion of nonzero

shear γ due to surrounding matter. Bayer et al. (2006) uses a complex formalism in order

to discuss the maximum number of images in a configuration of point masses, by replacing

one of point deflectors by a spherically symmetric distributed mass. In their lens equation

(3) for point lenses, the plus symbol in front of the summation symbols in the parentheses

should read minus one. Only after taking account of this typo, their equation could agree

with Eq. (5). In order to show this agreement, one may use (−1)2N = 1 and (−1)2N−1 = −1.

It is worthwhile to mention that Eq. (5) contains not only all the solutions for the lens

equation (2) but also fiducial unphysical roots which do not satisfy Eq. (2), in price of the

manipuration for obtaining an analytic polynomial equation, as already pointed out by Rhie

() and Bayer et al. (). Such an inclusion of unphyscal solutions can be easily understood by

remembering that we get unphysical roots as well as true ones if one takes a square of an

equation including the square root. In fact, an analogous thing happens in another example

of gravitational lenses such as an isothermal ellipsoidal lens as a simple model of galaxies

(Asada et al. 2003).

In general, the mass ratio νi satisfies 0 < νi < 1, so that it can be taken as an expansion

parameter. Without loss of generality, we can assume that the first lens object is the most

massive, nemely m1 ≥ mi for i = 2, 3, · · · , N . Thus, formal solutions are expressed in Taylor
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z =
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· · ·
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2 νp3

3 · · · νpN
N z(p2)(p3)···(pN ). (6)

Up to this point, the origin of the lens plane is arbitrary. In the following,the origin of

the lens plane is chosen as the location of the mass m1, such that one can put ε1 = 0. This

enables us to simplify some expressions and to easily understand their physical meanings,

mostly because gravity is dominated by m1 in most regions except for the vicinity of mi

(i $= 1). Namely, it is natural to treat our problem as perturbations around a single lens by

m1 (located at the origin of the coordinates).

In numerical simulation codes or practical data analysis, however, one may use the co-

ordinates in which the origin is not the location of m1. If one wishes to consider such a case
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At the linear order in ν2, true solutions for the triple lens system has to agree with that for

the binary system, when one takes a limit as ν3 → 0. Therefore, out of the above three roots,

ones expressed by Eqs. (30) and (31) must be abandoned, because of their disagreement in

the limit as ν3 → 0.

6 PERTURBATIVE SOLUTIONS FOR A POLYNOMIAL FORMALISM 3:

N POINT-MASS LENS

Here, we investigate a lens system consisting of N point masses.

The polynomial lens equation (5) is expanded as

N∑

p2=0

N∑

p3=0

· · ·
N∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN g(p2)(p3)···(pN )(z) = 0. (32)

For this equation, we seek a solution in expansion series as

z =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN z(p2)(p3)···(pN ). (33)

6.1 0th order

Zeroth order solutions are obtained by solving the (N2 + 1)th-order polynomial equation as

g(0)···(0) = 0. The roots are αi ≡ −1/w∗
i , α±, and εi (with multiplicity = N) for i = 2, · · ·N ,

where for later convenience we denoted

wi = w − εi. (34)

Like in the binary lens, αi is unphysical, in the sense that it does not satisfy the lens equation

(2). By using all the 0-th order roots, g(0)···(0) is factorised

g(0)···(0)(z) = (z − α+)(z − α−)

×
N∏

j=2

(w∗
j )

N
N∏

k=2

(z − εk)
N

N∏

l=2

(z +
1

w∗
l

). (35)

6.2 1st order

Next, we seek 1st-order roots. In the similar manner in the double or triple mass case, we

can obtain a 1st-order root as

z(0)···(1k)···(0) = −g(0)···(1k)···(0)(α±)

g
′
(0)···(0)(α±)

, (36)

where 1k denotes that the k-th index is the unity, namely pk = 1.
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α± =
w

2



1 ±
√

1 +
4

ww∗



 . (10)

One of the roots, α3, is unphysical, because it does not satisfy Eq. (2) at O(m0). By using

all the 0-th order roots including unphysical ones, f0 is factorised as

f0(z) = w∗(w∗ − ε∗)(z − ε)2(z − α3)(z − α+)(z − α−). (11)

4.2 1st order

Next, we seek 1st-order roots. We put z = α± + mz(1) + O(m2). At the linear order in m,

Eq. (5) becomes

z(1)f
′

0(α±) + f1(α±) = 0, (12)

where the prime denotes the derivative with respect to z. Thereby we obtain a 1st-order

root as

z(1) = −f1(α±)

f
′
0(α±)

. (13)

The similar manner cannot be applied to a case of ε, because it is a doublet root with

f0(ε) = f
′
0(ε) = 0, while f

′′
0 (ε) "= 0. At O(m2), Eq. (5) can be factorised as

(
z(1)[(w

∗ − ε∗)ε + 1] + ε
)

×
(
z(1)[(ε − w)(w∗ε + 1) − ε] + ε(ε − w)

)
= 0. (14)

Hence, we obtain the two roots as

z(1) =
ε

(ε∗ − w∗)ε − 1
, (15)

z(1) =
ε(ε − w)

(ε − w)(w∗ε + 1) − ε
. (16)

Here, the latter root expressed by Eq. (16) is unphysical and thus abandoned, because it

doesn’t satisfy the original lens equation (2). On the other hand, the former root by Eq.

(16) satisfies the equation and thus is a true root.

4.3 2nd Order

First, we consider perturbations around zeroth-order solutions of α±. At O(m2), Eq. (5) is

linear in z(2) and thus easily solved for z(2) as

z(2) = −
z2
(1)f

′′
0 (α±) + 2z(1)f

′
1(α±) + 2f2(α±)

2f
′′
0 (α±)

. (17)
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6.2 1st order
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can obtain a 1st-order root as

z(0)···(1k)···(0) = −g(0)···(1k)···(0)(α±)

g
′
(0)···(0)(α±)

, (36)

where 1k denotes that the k-th index is the unity, namely pk = 1.
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6.1 0th order

Zeroth order solutions are obtained by solving the (N2 + 1)th-order polynomial equation as

g(0)···(0) = 0. The roots are αi ≡ −1/w∗
i , α±, and εi (with multiplicity = N) for i = 2, · · ·N ,

where for later convenience we denoted

wi = w − εi. (34)

Like in the binary lens, αi is unphysical, in the sense that it does not satisfy the lens equation

(2). By using all the 0-th order roots, g(0)···(0) is factorised

g(0)···(0)(z) = (z − α+)(z − α−)

×
N∏

j=2

(w∗
j )

N
N∏

k=2

(z − εk)
N

N∏

l=2

(z +
1

w∗
l

). (35)

6.2 1st order

Next, we seek 1st-order roots. In the similar manner in the double or triple mass case, we

can obtain a 1st-order root as

z(0)···(1k)···(0) = −g(0)···(1k)···(0)(α±)

g
′
(0)···(0)(α±)

, (36)

where 1k denotes that the k-th index is the unity, namely pk = 1.

c© 2008 RAS, MNRAS 000, 1–20

does not satisfy Lens Eq.

mixed with 
unphysical roots



Dual-Complex-Variables 
Formalism
z*Both     andz

Equivalent to Lens Eq.
Merit

 No unphysical root



16 H. Asada

Therefore, the lens equation at O(m0) becomes linear in z∗(1) without including z(1). Imme-

diately, it determines z∗(1), whose complex conjugate provides

z(1) =
ε

(w∗ − ε∗)ε + 1
. (65)

This shows a clear difference between z(0) = ε and z(0) "= ε cases. Equation (51) for the latter

case contains both z(1) and z∗(1), so that we must use a relation such as Eq. (53).

7.6 2nd, 3rd and nth order (z(0) = ε)

Next, we consider the lens equation at O(m1), namely C(1) = D(0). This determines z∗(2) as

z∗(2) = (z∗(1))
2

(
C(1) −

1

ε∗

)
. (66)

Let us look for z(3). Equation of C(2) = D(1) provides z∗(3) as

z∗(3) = (z∗(1))
2C(2) +

(z∗(1))
3

(z∗(0))
2

+
(z∗(2))

2

z∗(1)
. (67)

By the same way, one can obtain perturbatively nth-order solutions z(n) around z(0) = ε.

8 PERTURBATIVE SOLUTIONS FOR ZZ∗-DUAL FORMALISM 2:

LENSING BY N POINT MASS

The purpose of this section is to extend the proposed method to a general case of gravita-

tional lensing by arbitrary number of point masses.

The lens equation is written as

C(z, z∗) =
N∑

k=2

νkDk(z
∗), (68)

where C(z, z∗) was defined by Eq. (39) and we defined

Dk(z
∗) =

1

z∗
− 1

z∗ − ε∗k
. (69)

C(z, z∗) and Dk(z∗) in the lens equation (68) are expanded as

C(z, z∗) =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN

×C(p2)(p3)···(pN )(z, z
∗), (70)

Dk(z
∗) =

∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN

×Dk(p2)(p3)···(pN )(z
∗), (71)

where C(p2)(p3)···(pN ) and Dk(p2)(p3)···(pN ) are independent of any νi. We seek a solution in

expansion series as
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z =
∞∑

p2=0

∞∑

p3=0

· · ·
∞∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN)pN z(p2)(p3)···(pN ), (72)

where z(p2)(k3)···(pN ) is a constant to be determined iteratively.

Equation (69) shows that Dk(z∗) has a pole at z∗ = ε∗k. Therefore, we shall discuss two

cases of z(0) != εk or z(0) = εk separately.

8.1 0th order (z(0) != ε)

0-th order solutions are obtained by solving the equation as

C(z, z∗) = 0. (73)

This was solved in the previous section for the binary lens case. The solution is given as

z(0)···(0) = Aw with the coefficient A defined by Eq. (49).

8.2 1st order (z(0) != ε)

At the linear order in νk, Eq. (68) is

C(0)···(1k)···(0) = νkDk(0)···(0), (74)

where 1k denotes that the k-th index is the unity. This equation is rewritten as

z(0)···(1k)···(0) + a(0)···(1k)···(0) × z∗(0)···(1k)···(0) = b(0)···(1k)···(0), (75)

where we defined

a(0)···(1k)···(0) =
1

(z∗(0)···(0))
2

(76)

b(0)···(1k)···(0) =
ε∗k

z∗(0)···(0)(z
∗
(0)···(0) − ε∗k)

(77)

By using Eq. (53), we obtain

z(0)···(1k)···(0) =
b(0)···(1k)···(0) − a(0)···(1k)···(0)b∗(0)···(1k)···(0)

1 − a(0)···(1k)···(0)a∗
(0)···(1k)···(0)

. (78)

8.3 2nd order (z(0) != ε)

Let us consider two types of second-order solutions as z(0)···(2k)···(0) and z(0)···(1k)···(1l)···(0) sep-

arately.

First, we shall seek z(0)···(2k)···)0). At O(ν2
k), Eq. (68) becomes

z(0)···(2k)···(0) + a(0)···(2k)···(0)z
∗
(0)···(2k)···(0)

= b(0)···(2k)···(0), (79)
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where we defined

a(0)···(2k)···(0) =
1

(z∗(0)···(0))
2
, (80)

b(0)···(2k)···(0) = −Dk(0)···(1k)···(0) +
(σ∗

(0)···(2k)···(0))
2

z∗(0)···(0)
(81)

By using the relation (53) for Eq. (79), we obtain

z(0)···(2k)···(0) =
b(0)···(2k)···(0) − a(0)···(2k)···(0)b∗(0)···(2k)···(0)

1 − a(0)···(2k)···(0)a∗
(0)···(2k)···(0)

. (82)

Next, let us determine z(0)···(1k)···(1l)···(0). At O(νkνl) for k < l, Eq. (68) becomes

z(0)···(1k)···(1l)···(0) + a(0)···(1k)···(1l)···(0)z
∗
(0)···(1k)···(1l)···(0)

= b(0)···(1k)···(1l)···(0), (83)

where we defined

a(0)···(1k)···(1l)···(0) =
1

(z∗(0)···(0))
2
, (84)

b(0)···(1k)···(1l)···(0) = −Dk(0)···(1l)···(0) − Dl(0)···(1k)···(0)

+
2σ∗

(0)···(1k)···(0)σ
∗
(0)···(1l)···(0)

z∗(0)···(0)
(85)

By using the relation (53) for Eq. (83), we obtain

z(0)···(1k)···(1l)···(0)

=
b(0)···(1k)···(1l)···(0) − a(0)···(1k)···(1l)···(0)b

∗
(0)···(1k)···(1l)···(0)

1 − a(0)···(1k)···(1l)···(0)a
∗
(0)···(1k)···(1l)···(0)

. (86)

8.4 0th and 1st order (z(0) = εk)

Next, we investigate the vicinity of z = εk, which is a pole of Dk. The other pole of Dk is

z = 0, which makes C(z, z∗) divergent. Therefore, z = 0 and its neighbourhood is abandoned.

Let us focus on a root around z = ε.

We assume z = εk + νkz(0)···(1k)···(0) + O(ν2
k). Then, we obtain

C(0)···(0) = w − εk +
1

ε∗k
, (87)

D(0)···(−1k)···(0) = − 1

z∗(0)···(−1k)···(0)

. (88)

Therefore, the lens equation at O(ν0
k) becomes linear in z∗

(0)···(1k)···(0) without including

z(0)···(1k)···(0). Immediately, it determines z∗(0)···(1k)···(0), whose complex conjugate provides

z(0)···(1k)···(0) =
εk

(w∗ − ε∗k)εk + 1
. (89)
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Figure 4. Light curves by two methods. In this figure, we assume
a different source trajectory as w = 0.8 + it. The lens parameters
are the same as ν2 = 0.1 and e = 1 in Fig. 3. The solid curve in
the top panel denotes a case when the lens equation is numeri-
cally solved. The dotted curve is drawn by using the linear order
approximation. The bottom panel shows the residual between the
two curves.

9 CONCLUSION

Under a small mass-ratio approximation, this paper devel-
oped a perturbation theory of N coplanar (in the thin lens
approximation) point-mass gravitational lens systems with-
out symmetries on a plane. The system can be separated
into a single mass lens as a background and its perturbation
due to the remaining point masses.

First, we investigated perturbative structures of the
single-complex-variable polynomial, into which the lens

Figure 5. Graph representations of interactions among point
masses for images at the second order level. The top and bot-
tom graphs represent a mutually-interacting image and a self-
interacting one, respectively.

equation is embedded. What we showed is that some of
zeroth-order roots of the polynomial do not satisfy the lens
equation and thus are unphysical. This inclusion of correct
but unphysical roots is consistent with the earlier work on
a theorem on the maximum number of lensed images (Rhie
2001, 2003).

Next, the dual-complex-variables formalism was pro-
posed to avoid inclusions of unphysical roots. We presented
an explicit form of perturbed image positions as a function
of source and lens positions. As a key tool for perturbative
computations, Eq. (53) was also found. For readers’ conve-
nience, the perturbative roots are listed in Table 3.

There are numerous possible applications along the
course of the perturbation theory of N point-mass gravi-
tational lens systems. For instance, it will be interesting to
study lensing properties such as magnifications by using the
functional form of image positions.

Furthermore, the validity of the present result may be
limited in the weak field regions. It is important also to
extend the perturbation theory to a domain near (and pos-
sibly inside) the caustics. Then, positions of images with the
maximum number would be written as a function of source
and lens positions. The present perturbation method con-
siders only the images which exist in the small mass limit
as νi → 0. Consequently, the number of images obtained
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as νi → 0. Consequently, the number of images obtained
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Table 2. Example of perturbative images via the dual-complex-variables formalism: We assume the same values for parameters as Table 1.
Good agreements with these tables suggest a consistency between the single-complex-polynomial and the dual-complex-variables formalism,
regarding the true images except for unphysical roots.

Case 1 (On-axis) ν = 0.1 e = 1 w = 2

Root 1 2 3

1st. 2.43921 -0.389214 0.95
2nd. 2.43855 -0.388551 0.95
3rd. 2.43858 -0.388519 0.949938

Lens Eq. 2.43858 -0.388517 0.949937

Case 2 (Off-axis) ν = 0.1 e = 1 w = 1 + i

Root 1 2 3

1st. 1.33716+1.40546 i -0.337158-0.355459 i 0.95-0.05 i
2nd. 1.33632+1.40363 i -0.336316-0.354881 i 0.95-0.05 i
3rd. 1.33634+1.40371 i -0.336275-0.354839 i 0.95-0.05025 i

Lens Eq. 1.33633+1.40371 i -0.336272-0.354835 i 0.950015-0.0502659 i

where C(z, z∗) was defined by Eq. (39) and we defined

Dk(z∗) =
1
z∗

−
1

z∗ − ε∗k
. (73)

C(z, z∗) and Dk(z∗) in the lens equation (72) are ex-
panded as

C(z, z∗) =

∞
∑

p2=0

∞
∑

p3=0

· · ·

∞
∑

pN =0

(ν2)
p2(ν3)

p3 · · · (νN )pN

×C(p2)(p3)···(pN )(z, z∗), (74)

Dk(z∗) =

∞
∑

p2=0

∞
∑

p3=0

· · ·

∞
∑

pN =0

(ν2)
p2(ν3)

p3 · · · (νN )pN

×Dk(p2)(p3)···(pN )(z
∗), (75)

where C(p2)(p3)···(pN ) and Dk(p2)(p3)···(pN ) are independent
of any νi. We seek a solution in expansion series as

z =

∞
∑

p2=0

∞
∑

p3=0

· · ·

∞
∑

pN=0

(ν2)
p2(ν3)

p3 · · · (νN )pN z(p2)(p3)···(pN ), (76)

where z(p2)(p3)···(pN ) is a constant to be determined itera-
tively. The perturbed roots are normalised by the zeroth-
order one as

σ(p2)(p3)···(pN ) =
z(p2)(p3)···(pN )

z(0)···(0)
. (77)

Equation (73) shows that Dk(z∗) has a pole at z∗ = ε∗k.
Therefore, we shall discuss two cases of z(0) #= εk or z(0) = εk,
separately.

8.1 0th order (z(0)···(0) #= εi for i = 1, · · · , N)

Zeroth order solutions are obtained by solving the equation
as

C(z, z∗) = 0. (78)

This has been solved for the binary lens case. The solution
is given as

z(0)···(0) = Aw, (79)

with the coefficient A defined by Eq. (49).

8.2 1st order (z(0)···(0) #= εi for i = 1, · · · , N)

At the linear order in νk, Eq. (72) is

C(0)···(1k)···(0) = νkDk(0)···(0), (80)

where 1k denotes that the k-th index is the unity. This equa-
tion is rewritten as

z(0)···(1k)···(0)+a(0)···(1k)···(0)×z∗
(0)···(1k)···(0) = b(0)···(1k)···(0), (81)

where we defined

a(0)···(1k)···(0) =
1

(z∗
(0)···(0))

2
, (82)

b(0)···(1k)···(0) =
ε∗k

z∗
(0)···(0)(z

∗
(0)···(0) − ε∗k)

, (83)

By using Eq. (53), we obtain

z(0)···(1k)···(0)

=
b(0)···(1k)···(0) − a(0)···(1k)···(0)b

∗
(0)···(1k)···(0)

1 − a(0)···(1k)···(0)a∗
(0)···(1k)···(0)

. (84)

8.3 2nd order (z(0)···(0) #= εi for i = 1, · · · , N)

Let us consider two types of second-order solutions as
z(0)···(2k)···(0) and z(0)···(1k)···(1!)···(0) for k #= $, separately.

First, we shall seek z(0)···(2k)···(0). At O(ν2
k), Eq. (72)

becomes

z(0)···(2k)···(0) + a(0)···(2k)···(0)z
∗
(0)···(2k)···(0)

= b(0)···(2k)···(0), (85)

where we defined

a(0)···(2k)···(0) =
1

(z∗
(0)···(0))

2
, (86)
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By using the relation (53), Eq. (55) is solved as

z(2) =
b2 − a2b∗2
1 − a2a∗

2

. (59)

7.4 3rd order and nth order (z(0) "= ε)

Computations at O(m3) are similar to those at O(m2) as
shown below. At O(m3), Eq. (38) takes a form as

z(3) + a3z
∗
(3) = b3, (60)

where we defined

a3 =
1

(z∗
(0))

2
, (61)

b3 = −D(2) +
2σ∗

(1)σ
∗
(2) − (σ∗

(1))
3

z∗
(0)

. (62)

Here, D(2) is written as

D(2) = −
σ∗

(2) − (σ∗
(1))

2

z∗
(0)

+
z∗
(2)

(z∗
(0) − ε∗)2

−
(z∗

(1))
2

(z∗
(0) − ε∗)3

. (63)

Using the relation (53) for Eq. (60), we obtain

z(3) =
b3 − a3b

∗
3

1 − a3a∗
3

. (64)

In the similar manner, one can obtain iteratively nth-
order roots z(n), which obeys an equation in the form of Eq.
(52), and thus can use Eq. (53) to obtain z(n).

7.5 0th and 1st order (z(0) = ε)

Next, we investigate the vicinity of z = ε, which is a pole of
D. The other pole of D is z = 0, which makes also C(z, z∗)
divergent. Therefore, z = 0 and its neighbourhood are aban-
doned. Let us focus on a root around z = ε.

We assume z = ε + mz(1) + O(m2). Then, the relevant
terms in expansion series of C and D become

C(0) = w − ε +
1
ε∗

, (65)

D(−1) = −
1

z∗
(1)

, (66)

where the index −1 means that the inverse of m appears be-
cause of the pole at ε. Therefore, the lens equation at O(m0)
becomes linear in z∗

(1) without including z(1). Immediately,
it determines z∗

(1). Its complex conjugate becomes

z(1) = −
ε

(w∗ − ε∗)ε + 1
. (67)

This shows a clear difference between z(0) = ε and z(0) "= ε
cases. Equation (51) for the latter case contains both z(1)

and z∗
(1), so that we must use a relation such as Eq. (53).

7.6 2nd, 3rd and nth order (z(0) = ε)

Next, we consider the lens equation at O(m1), namely
C(1) = D(0). This determines z∗

(2) as

z∗
(2) = (z∗

(1))
2
(

C(1) −
1
ε∗

)

, (68)

where we may use
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Figure 2. Perturbative image positions for a binary lens case.
This plot corresponds to Tables 1 and 2. The lenses (e1 = 0, e2 =
1) and sources (w = 2 and w = 1+i) are denoted by filled squares.
The image positions are denoted by filled disks. Perturbative im-
ages at the 1st, 2nd and 3rd orders are overlapped so that we
cannot distinguish them in this figure.

C(1) = −z(1) −
z∗
(1)

(ε∗)2
. (69)

Let us consider O(m2) to look for z(3). Equation of
C(2) = D(1) provides z∗

(3) as

z∗
(3) = (z∗

(1))
2C(2) +

(z∗
(1))

3

(ε∗)2
+

(z∗
(2))

2

z∗
(1)

, (70)

where we can use

C(2) = −z(2) −
z∗
(2)

(ε∗)2
+

(z∗
(1))

2

(ε∗)3
. (71)

By the same way, one can obtain perturbatively nth-order
solutions z(n) around z(0) = ε.

Table 2 shows an example of perturbative roots in
the dual-complex-variables formalism and their convergence.
Tables 1 and 2 suggest that the polynomial approach and the
dual-complex-variables formalism are consistent with each
other, regarding the true images. Figure 2 shows image po-
sitions on the lens plane, corresponding to these tables.

8 PERTURBATIVE SOLUTIONS FOR
ZZ∗-DUAL FORMALISM 2: LENSING BY N
POINT MASS

The purpose of this section is to extend the proposed method
to a general case of gravitational lensing by an arbitrary
number of point masses.

The lens equation is written as

C(z, z∗) =

N
∑

k=2

νkDk(z∗), (72)
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Figure 4. Light curves by two methods. In this figure, we assume
a different source trajectory as w = 0.8 + it. The lens parameters
are the same as ν2 = 0.1 and e = 1 in Fig. 3. The solid curve in
the top panel denotes a case when the lens equation is numeri-
cally solved. The dotted curve is drawn by using the linear order
approximation. The bottom panel shows the residual between the
two curves.

9 CONCLUSION

Under a small mass-ratio approximation, this paper devel-
oped a perturbation theory of N coplanar (in the thin lens
approximation) point-mass gravitational lens systems with-
out symmetries on a plane. The system can be separated
into a single mass lens as a background and its perturbation
due to the remaining point masses.

First, we investigated perturbative structures of the
single-complex-variable polynomial, into which the lens

Figure 5. Graph representations of interactions among point
masses for images at the second order level. The top and bot-
tom graphs represent a mutually-interacting image and a self-
interacting one, respectively.

equation is embedded. What we showed is that some of
zeroth-order roots of the polynomial do not satisfy the lens
equation and thus are unphysical. This inclusion of correct
but unphysical roots is consistent with the earlier work on
a theorem on the maximum number of lensed images (Rhie
2001, 2003).

Next, the dual-complex-variables formalism was pro-
posed to avoid inclusions of unphysical roots. We presented
an explicit form of perturbed image positions as a function
of source and lens positions. As a key tool for perturbative
computations, Eq. (53) was also found. For readers’ conve-
nience, the perturbative roots are listed in Table 3.

There are numerous possible applications along the
course of the perturbation theory of N point-mass gravi-
tational lens systems. For instance, it will be interesting to
study lensing properties such as magnifications by using the
functional form of image positions.

Furthermore, the validity of the present result may be
limited in the weak field regions. It is important also to
extend the perturbation theory to a domain near (and pos-
sibly inside) the caustics. Then, positions of images with the
maximum number would be written as a function of source
and lens positions. The present perturbation method con-
siders only the images which exist in the small mass limit
as νi → 0. Consequently, the number of images obtained
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factor is the inverse of the Jacobian for the lens mapping. It
is expressed as

A ≡
(

∂β

∂θ

)−1

=

(

∂(w, w∗)

∂(z, z∗)

)−1

=

(

∣

∣

∣

∂w
∂z

∣

∣

∣

2

−
∣

∣

∣

∂w
∂z∗

∣

∣

∣

2
)−1

, (108)

where the terms in the last line can be computed directly
by a derivative of Eq. (3), the lens equation in a complex
notation. Amplifications of each image are obtained by sub-
stituting its image position into Eq. (108). Practical numer-
ical estimations may follow this procedure. For illustrating
this, Figs. 3 and 4 show examples of light curves by a binary
lens via the perturbative approach. These curves are well
reproduced. However, double peaks due to caustic crossings
cannot be reproduced by the present method.

As an approach enabling a simpler argument before go-
ing to numerical estimations, we use the functional form
of perturbed image positions. In the perturbation theory,
lensed images can be split into two groups. One is that
their zeroth-order root is not located at a lens object
(z(0)···(0) #= εk). In the other group, zeroth-order roots orig-
inate from a lens position at εk. We call the former and
latter ones mutually-interacting and self-interacting images,
respectively, because all the lens objects make contributions
to mutually-interacting images at the linear order as shown
by Eq. (84). On the other hand, self-interacting images are
influenced only by the nearest lens object at εk at the lin-
ear and even at the second orders as shown by Eqs. (99)
and (101). Figure 5 shows graph representations for the two
groups of images.

For the simplicity, we consider stretching of images
roughly as |∂z/∂w|, though rigorously speaking it must be
the amplification. Table 1 and Equation (76) mean that the
complex derivative becomes for mutually-interacting images

∂z
∂w

=
∂z(0)···(0)

∂w
+

∑

k

νk

∂z(0)···(1k)···(0)

∂w
, (109)

and for self-interacting images

∂z
∂w

= νk

∂z(0)···(1k)···(0)

∂w
, (110)

where we used that εk is a constant.
For the simplicity, we assume νk = O(1/N) for a large N

case. Then, the linear order term in self-interacting images is
O(1/N), and thus they become negligible as N → ∞. On the
other hand, mutually-interacting ones have non-vanishing
terms even at the zeroth order. Hence, they can play a cru-
cial role.

However, we should take account of a spatial distribu-
tion of lens objects. If they are clustering and thus dense
at a certain region, then the total flux of light through
such a dense region is not negligible any more. Let us de-
note the fraction of the clustering particles by f . Total
contributions from such clustering self-interacting images
are estimated approximately as a typical image magnifi-
cation multiplied by the number of the particles, namely
fN × νk(∼ 1/N) = O(f), which does not vanish even as
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Figure 3. Light curves by two methods. One is based on a
numerical case that the lens equation is solved numerically. The
other is due to the first order approximation. The top figure shows
that the two curves are overlapped, where A denotes the total
amplification. The bottom panel shows the residual by the two
methods. The residual is defined as the difference between A com-
puted numerically and A in the linear approximation. We assume
the source trajectory as w = 1.4+it. Here, the time t is in units of
the Einstein cross time, which is defined as θE/v⊥ for the trans-
verse angular relative velocity. The lens parameters are ν2 = 0.1
and e = 1.

N → ∞. Figures 6 and 7 show an example of a large N
case, where N is chosen as 1000.
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For the simplicity, we assume νk = O(1/N) for a large N

case. Then, the linear order term in self-interacting images is
O(1/N), and thus they become negligible as N → ∞. On the
other hand, mutually-interacting ones have non-vanishing
terms even at the zeroth order. Hence, they can play a cru-
cial role.

However, we should take account of a spatial distribu-
tion of lens objects. If they are clustering and thus dense
at a certain region, then the total flux of light through
such a dense region is not negligible any more. Let us de-
note the fraction of the clustering particles by f . Total
contributions from such clustering self-interacting images
are estimated approximately as a typical image magnifi-
cation multiplied by the number of the particles, namely
fN × νk(∼ 1/N) = O(f), which does not vanish even as
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Figure 3. Light curves by two methods. One is based on a
numerical case that the lens equation is solved numerically. The
other is due to the first order approximation. The top figure shows
that the two curves are overlapped, where A denotes the total
amplification. The bottom panel shows the residual by the two
methods. The residual is defined as the difference between A com-
puted numerically and A in the linear approximation. We assume
the source trajectory as w = 1.4+it. Here, the time t is in units of
the Einstein cross time, which is defined as θE/v⊥ for the trans-
verse angular relative velocity. The lens parameters are ν2 = 0.1
and e = 1.

N → ∞. Figures 6 and 7 show an example of a large N
case, where N is chosen as 1000.
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Figure 4. Light curves by two methods. In this figure, we assume
a different source trajectory as w = 0.8 + it. The lens parameters
are the same as ν2 = 0.1 and e = 1 in Fig. 3. The solid curve in
the top panel denotes a case when the lens equation is numeri-
cally solved. The dotted curve is drawn by using the linear order
approximation. The bottom panel shows the residual between the
two curves.

9 CONCLUSION

Under a small mass-ratio approximation, this paper devel-
oped a perturbation theory of N coplanar (in the thin lens
approximation) point-mass gravitational lens systems with-
out symmetries on a plane. The system can be separated
into a single mass lens as a background and its perturbation
due to the remaining point masses.

First, we investigated perturbative structures of the
single-complex-variable polynomial, into which the lens

Figure 5. Graph representations of interactions among point
masses for images at the second order level. The top and bot-
tom graphs represent a mutually-interacting image and a self-
interacting one, respectively.

equation is embedded. What we showed is that some of
zeroth-order roots of the polynomial do not satisfy the lens
equation and thus are unphysical. This inclusion of correct
but unphysical roots is consistent with the earlier work on
a theorem on the maximum number of lensed images (Rhie
2001, 2003).

Next, the dual-complex-variables formalism was pro-
posed to avoid inclusions of unphysical roots. We presented
an explicit form of perturbed image positions as a function
of source and lens positions. As a key tool for perturbative
computations, Eq. (53) was also found. For readers’ conve-
nience, the perturbative roots are listed in Table 3.

There are numerous possible applications along the
course of the perturbation theory of N point-mass gravi-
tational lens systems. For instance, it will be interesting to
study lensing properties such as magnifications by using the
functional form of image positions.

Furthermore, the validity of the present result may be
limited in the weak field regions. It is important also to
extend the perturbation theory to a domain near (and pos-
sibly inside) the caustics. Then, positions of images with the
maximum number would be written as a function of source
and lens positions. The present perturbation method con-
siders only the images which exist in the small mass limit
as νi → 0. Consequently, the number of images obtained
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Figure 6. Example of a large N case. Here, we assume a trun-
cated isothermal sphere projected onto a single lens plane with
N = 1000, where the truncation radius is the unity. For the sim-
plicity, we assume equal masses. The source located at 0.25 is
denoted by the circle. The top figure shows locations of the N
point masses on the lens plane. The bottom shows a plot of im-
age positions by using the perturbative solutions at the second
order. In practice, the linear-order and second-order roots make
no difference distinguishable by eyes in the figure.

by the present perturbation method is less than the max-
imum number for a N point-mass lens. This suggests that
other images do not have the small mass limit. This is also
in agreement with previous works. For instance, the appear-
ance of the maximum number of images for a binary lens
requires a finite mass ratio and the caustic crossing (Schnei-
der and Weiss 1986).
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Figure 7. Plot of image positions with lensing amplification
for a case of N = 1000. The source and lenses are the same as
those in Fig. 6. Here, we take account of amplifications by lensing.
The area of a disk corresponding to each image is proportional to
the magnification factor in arbitrary units. Large amplifications
near ±1 are caused by the mutually-interacting images. On the
other hand, a concentration of small but many images around
the center are due to the self-interacting images, because lens
objects have a large number density there. These three regions
may correspond to three images for a singular isosphere lens in
the limit of N → ∞.
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Figure 8. Einstein ring broken by the lens discreteness due to the
finite-N effect. The lenses are the same as those in Figs. 6 and 7.
The source is located at the origin of the coordinates. Amplifica-
tions are taken into account. The area denotes the magnification
factor in arbitrary units.
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First attempt to get
lensed image positions 

for arbitrary N



Future Works
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Extension 

Applications 
to N-Finite Effects
Ex) Mean, Variance in Mag.

to Multiple Lens Planes
Ex) Cosmological GL
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