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We show that the recently developed Hamiltonian theory for high energy QCD
evolution in the presence of gluon number fluctuation is consistent with the color
dipole picture. We construct the color glass weight function and the dipole densities
of an onium, and derive evolution equations for these quantities by acting with the
Bremsstrahlung Hamiltonian.

1. Introduction

Recently there has been renewed interest in the small–x QCD evolution
equation in the dilute, non-saturated regime. The main reason of this is the
recognition that the gluon number fluctuations 1 developed in this regime
significantly affect the asymptotic behavior of scattering amplitudes. As
is well established, the recombination of gluon cascades (ladders), to lead-
ing log approximation, is included in the BK–JIMWLK equation.3 [Figure
1(a)] However, it does not describe how a hadron develops many cascades
and eventually comes to saturation because it misses the corresponding
Bremsstrahlung diagrams Fig. 1(b). These diagrams are important only in
the dilute regime, and are responsible for the event-by-event fluctuation of
the gluon number.2 In this talk I will explain how to include the diagrams
Fig. 1(b) in the Hamiltonian approach to high energy evolution.

2. Bremsstrahlung Hamiltonian

In Ref. 4, an effective action summing all order Bremsstrahlung diagrams
has been derived in the Color Glass Condensate (CGC) formalism. [See
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Figure 1. (a) Gluon recombination in a high energy hadron (upper blob). (b) Gluon
splitting.

Ref. 7 for a very different approach.] It reads

∆HBREM =
1

(2π)3

∫

xyz

Kxyz

[
ρ∞(x)ρ∞(y) + ρ−∞(x)ρ−∞(y)

−ρ∞(x)W (z)ρ−∞(y)− ρ−∞(x)W †(z)ρ∞(y)
]
, (1)

with the two dimensional kernel

K(x, y, z) ≡ (x− z) · (y − z)
(x− z)2(z − y)2

, (2)

and the Wilson line

W (x) = P exp
(
−g

∫ ∞

−∞
dx+ δ

δρa(x+, x)
T a

)
. (3)

The action is quadratic in the charge ρ of the right–moving hadron (repre-
sented as a blob in Fig. 1(b), and is all order in A− corresponding to the
gluon legs. The subscript ±∞ refers to the x+ coordinate. In the previous
formulation of the CGC, the charges ρ were effectively x+–independent.
But in the presence of Bremsstrahlung, one has to explicitly keep track
of the x+–coordinate. This is tantamount to treat the color charges as
non–commutative matrix.7,8

3. Dipole model limit

In general, evolution equations derived from HBREM are very complicated
due to the non–commutativity problem. However, as shown in Ref. 5, in
the dipole model in the large Nc limit, the non–commutativity of charges
becomes irrelevant and one can derive tractable evolution equations. In
fact, the diagram Fig. 1(b) is naturally included in the dipole model as the
splitting of a dipole and subsequent gluon emission from the child dipoles,
see Fig. 2. Because of this reason, most of the recent developments in gluon
fluctuations have been made in the dipole model.
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Figure 2. Gluon Bremsstrahlung corresponds to the dipole splitting.

The point is that one can explicitly construct the color glass weight
function for an onium (=collection of dipoles):

Zτ [ρ] =
∞∑

N=1

∫
dΓN PN ({zi}; τ)

N∏

i=1

D†(zi−1, zi) δ[ρ] , (4)

where τ is the rapidity and PN is the N–dipole probability distribution
which can be computed numerically.1 D† is the dipole creation operator

D†(x, y) =
1

Nc
tr

(
W (x)W †(y)

)
, (5)

acting on the dipole ‘vacuum’ state δ[ρ].
The evolution equation for an arbitrary operator X[ρ] is given by

∂

∂τ
〈X[ρ]〉 =

∫
[Dρ]Zτ [ρ]HBREMX[ρ]. (6)

It is straightforward to work out the action of HBREM on Zτ keeping
only large–Nc surviving terms 6,5. The result is consistent with the known
evolution equation for PN . Then one can evaluate the remaining integral
over ρ. Here we give two examples. The evolution equation for the dipole
density operator

D(x,y) ≡ − 1
g2Nc

ρa
∞(x)ρa

∞(y), (7)

is the BFKL equation. The evolution equation for the dipole pair density

〈D(x1,y1)D(x2, y2)〉τ =
1

g4N2
c

〈ρa(x1)ρa(y1)ρb(x2)ρb(y2)〉τ , (8)
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is given by

∂

∂τ
〈Dx1,y1Dx2,y2〉τ =

[
H

(1)
BFKL + H

(2)
BFKL

]〈Dx1,y1Dx2,y2〉τ

+
ᾱs

4π

{
Mx1y2x2δx2y1〈Dx1y2〉τ +Mx1x2y1δy1y2〈Dx1x2〉τ

+ My1y2x1δx1x2〈Dy1y2〉τ +My1x2x1δx1y2〈Dy1x2〉τ
}

. (9)

In addition to the BFKL part, the rhs. contains terms linear in 〈D〉. These
terms exactly correspond to the 2 → 4 process, Fig. 2. Likewise, the n–ple
dipole density couples to the n′–ple (n′ < n) dipole densities. Combined
with the terms describing gluon saturation, they constitute the Pomeron
loop equation. The solution to this equation and its phenomenological
consequences are discussed elsewhere.2
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