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I present a method for computing small-x resummed splitting functions in the
MS-scheme at subleading log x level in the context of the renormalisation-group-
improved approach.

The relation between the MS-scheme (widely used in fixed order per-

turbation theory) and the Q0-scheme1 (which appears the most natural

scheme for small-x resummations) is of primary importance if one wants to

stabilise at small-x the fixed order partonic anomalous dimensions.

Small-x resummations are obtained by employing the so-called k-

factorisation formula2. For instance, a structure function Fi at small-x

(i.e., small moments ω ≡ N − 1 ' 0), can be factorised in the product of

a process-dependent impact factor hi, and a universal unintegrated gluon

density F , both transverse momentum dependent:

Fi,ω(Q2) =

∫
d2k hi,ω(Q2,k)Fω(k) . (1)

The resummation of the leading logarithms of x is embodied in the unin-

tegrated gluon density which obeys the BFKL equation

Fω(k) = F (0)
ω (k) +

1

ω

∫
dk′2 K(k,k′)Fω(k′) . (2)

The Q0-scheme is defined by specifying an off-shell initial condition for

the gluon density: F (0)
ω (k) = δ2(k − Q0); the integrated gluon is then
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defined by integration up to the relevant scale Q2:

gω(Q2) =

∫
d2k Θ(Q2 − k2)Fω(k) . (3)

The relation between the Q0-scheme and the MS one is obtained by

solving the BFKL equation in dimensional regularisation D = 4 + 2ε. I

use a method3 based on an integral representation for the solution which

is suitable also for running coupling and NL corrections. In the limit of

vanishing ε, the integral is dominated by a saddle-point γ̄(αs/ω) given by

the familiar relation 1 = αs

ω

(
Q2

µ2

)ε
χ0(γ̄). The result

g(Q0)
ω (Q2) =

exp{
∫ γ̄

0
χ1/χ0}

γ̄
√
−χ′0(γ̄)

exp





1

ε

∫ αs
ω

“
Q2

µ2

”ε

0

da

a
γ̄(a)



 ≡ R · g

(MS)
ω

is an explicit factorisation of the collinear singularities in a minimal sub-

traction form, which has to be identified with the MS gluon. The ε-finite

prefactor, usually denoted R(γ̄(αs/ω)), is just the coefficient needed to

change the scheme, and depends in particular on the first two terms in

the ε-expansion of the BFKL kernel “eigenvalue” in 4 + 2ε dimensions

χ(γ, ε) = χ0(γ) + εχ1(γ) + · · · . The problem of this relation is that the

coefficient R, depending on the LL anomalous dimension γ̄, has leading

Pomeron singularities of increasing weight with the perturbative order, in-

dicating that a small-x resummation is in principle required for the scheme

change too.

This can be achieved4 by implementing the scheme change not just as

a product with the coefficient R, but in k-factorised form, namely as a

transverse momentum convolution of F with some function ρ:

g(MS)
ω (Q2) =

∫
d2k ρω(Q2/k2)Fω(k) (4)

By properly choosing the function ρ we can obtain the scheme change to

any degree of subleading accuracy. In the simplest approximation, the

requirement of consistency at LLx level constrains the function ρ to be just

the inverse Mellin transform of the coefficient function 1/γR(γ).

For values of the transverse momentum k2 smaller than the external

scale Q2, ρ is almost constant (see Fig. 1) and close to the unity; in the

opposite range, namely at large transverse momenta, it shows wide oscilla-

tions and negative values. The function ρ should be compared with the Θ

function which, in place of ρ, provides by definition the integrated gluon in

the Q0-scheme in Eq. (3).



June 26, 2006 17:35 Proceedings Trim Size: 9in x 6in colferai

3

-4 -2 0 2 4 6
Τ = log Q2 �k2

-1

-0.5

0

0.5

1

Ρ
exact HnumericL
analytic HΤ ® -¥L

Figure 1.

The big advantage of using k-factorisation for the scheme change is

that, by computing the unintegrated gluon F in the renormalisation group

improved (RGI) approach5, the effective anomalous dimension which dom-

inates the integral (4) is much smoother than the LLx one and is expected

to provide a much more stable result.

In Fig. 2 I compare the RGI NL gluon in the Q0-scheme in green with

the gluon in the MS-scheme in red. The fitted gluons of the CTEQ and

MRST collaborations are also shown. Our gluons have been obtained by

evolving the RGI NLx BFKL equation starting from a valence-like initial

condition which has not been fine-tuned so as to get good agreement at large

x. In particular, the small-x growth is just a consequence of the small-x

evolution. We observe that the difference between MS and Q0 is modest

compared to that between CTEQ and MRST. This could justify somehow

a phenomenological use of the Q0 gluon, for instance, in saturation studies.

Furthermore, there is no tendency for the MSbar gluon to go negative, as

one could have suspected from the oscillations of the ρ function shown in

the previous slide.
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Figure 3.

We can also extract the splitting functions in both schemes. As before,

these results can be taken seriously only at small-x . 10−1. It appears (see

Fig. 3) that the splitting function is more sensitive to the scheme change

than the density itself. At low Q2 the scheme difference is nearly the same

as the renormalisation scale uncertainty, and so might not be considered a

major effect. However, since the renormalisation scale uncertainty is NNLx,

it decreases more rapidly than the scheme difference. Therefore at large Q2

the effect of the factorisation scheme change is not negligible.

Quarks can also be included in the resummed flavour singlet evolution

with k-factorisation. We have performed in this case a preliminary study

based on an approximation which includes only the rational coefficients of

the γqg anomalous dimension. We find that resummation effects are in this

case sizeable even around x of order 10−3 and are somewhat larger than

the gluonic ones. However they are much smaller than pure NLx ones.

In conclusion, we have proposed a k-factorised form of the Q0 → MS

scheme-change which is stable and does not suffer of the leading Pomeron

singularity of the usual leading log(x) BFKL hierarchy. Its implementation

in a full quark-gluon evolution will provide MS small-x resummed splitting

functions which matches with the fixed order perturbative calculations.
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