NEUTRAL CURRENT CROSS SECTIONS WITH POLARISED LEPTON BEAM AT ZEUS

S. U. NOOR
York University,
Petrie Science and Engineering Building, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada

Abstract

Measurements of the neutral current cross sections for deep inelastic scattering in $e^{ \pm} p$ collisions with longitudinally polarised lepton beams are presented. The single differential cross section $d \sigma / d Q^{2}$ is presented for $e^{ \pm} p$. For the $e^{-} p$ data set, the double differential cross section in Q^{2} and x is shown and the structure function $x F_{3}$ is extracted using previously measured unpolarised $e^{+} p$ measurements. The polarised $e^{+} p$ measurements are based on an integrated luminosity of $23.8 \mathrm{pb}^{-1}$ taken by the ZEUS detector in 2004. The polarised $e^{-} p$ data has an integrated luminosity of $122 \mathrm{pb}^{-1}$ taken in 2004 and 2005. During both running periods, leptons and protons were collided at HERA with a centre-of-mass energy of 318 GeV . The Standard Model agrees well with all measurements, with the $d \sigma / d Q^{2}$ measurement showing clear evidence of parity violation.

Introduction

Deep inelastic scattering (DIS) of leptons off nucleons is a key tool to probe the structure of matter at small distance scales. The neutral current (NC) DIS interaction at HERA, $e^{ \pm} p \rightarrow e^{ \pm} X$, proceeds via the exchange of a photon or a Z^{0} boson.

The kinematics of NC DIS can be defined in terms of the variables x, y and Q^{2}. The variable Q^{2} is defined to be $Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2}$ where k and k^{\prime} are the four-momenta of the incoming and scattered lepton, respectively. Bjorken x is defined by $x=Q^{2} / 2 P \cdot q$ where P is the fourmomentum of the incoming proton. The variables x, y and Q^{2} are related by $Q^{2}=s x y$, where $s=4 E_{e} E_{p}$ is the square of the lepton-proton centre-of-mass energy (neglecting the masses of the incoming particles).

The Standard Model (SM) predicts that the cross section for $e^{ \pm} p$ NC DIS should exhibit a dependence on the polarisation of the incoming lepton due to the parity violating nature of the weak interaction. Therefore, this polarisation effect should be most significant at high Q^{2} where the Z^{0} boson
exchange becomes important.
These proceedings present the cross section measurements for $e^{ \pm} p$ NC DIS with longitudinally polarised lepton beams. The $\mathrm{e}^{+} \mathrm{p}$ measurements [1] are based on data with an integrated luminosity of $23.8 \mathrm{pb}^{-1}$ collected at a mean luminosity weighted polarisation of +0.32 and -0.41 with the ZEUS detector in 2004. The $\mathrm{e}^{-} \mathrm{p}$ data has an integrated luminosity of $122 \mathrm{pb}^{-1}$ with a mean luminosity weighted polarisation of +0.33 and -0.27 collected in 2004 and 2005. During both running periods HERA collided protons of energy 920 GeV with positrons or electrons of energy 27.5 GeV , yielding collisions at a centre-of-mass energy of 318 GeV .

Cross sections

The unpolarised electroweak Born-level cross section for the $e^{ \pm} p$ NC interaction can be written as

$$
\begin{equation*}
\frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}} H^{ \pm} \tag{1}
\end{equation*}
$$

where α is the fine-structure constant and $H^{ \pm}$is defined by

$$
H^{ \pm} \equiv Y_{+} F_{2}\left(x, Q^{2}\right) \mp Y_{-} x F_{3}\left(x, Q^{2}\right)
$$

where $Y_{ \pm} \equiv 1 \pm(1-y)^{2}$. The structure functions F_{2} and $x F_{3}$ contain the sums and differences of the quark and anti-quark parton density functions (PDFs). The longitudinal structure function F_{L} is ignored as it is small in the kinematic region considered.

The reduced cross section is defined as

$$
\tilde{\sigma}^{e^{ \pm} p}=\frac{x Q^{4}}{2 \pi \alpha^{2}} \frac{1}{Y_{+}} \frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=F_{2}\left(x, Q^{2}\right) \mp \frac{Y_{-}}{Y_{+}} x F_{3}\left(x, Q^{2}\right)
$$

which is used in this analysis to extract $x F_{3}$.
The NC cross section is modified when the incoming lepton beam is longitudinally polarised. The longitudinal polarisation is defined as

$$
P_{e}=\frac{N_{R}-N_{L}}{N_{R}+N_{L}}
$$

where N_{R} and N_{L} are the numbers of right and left-handed leptons in the beam. By including the polarisation, the Born $e^{ \pm} p$ NC cross section defined by Eq. (1) can be generalised as

$$
\frac{d^{2} \sigma\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[H^{ \pm}+P_{e} H_{P_{e}}^{ \pm}\right]
$$

where $H_{P_{e}}^{ \pm}$contains the polarised structure functions.

Figure 1. The $e^{+} p$ cross section $d \sigma / d Q^{2}$ is shown on the left and the $e^{-} p$ cross section $d \sigma / d Q^{2}$ is shown on the right. Both plots present $d \sigma / d Q^{2}$ for (a) positive polarisation data, (b) negative polarisation data, and (c) a ratio of the two. The curves show the predictions of the SM evaluated using the ZEUS-JETS PDFs.

Results

The cross section $d \sigma / d Q^{2}$ for $e^{ \pm} p$ NC DIS is shown in Fig. 1 for positively and negatively longitudinally polarised lepton beams. Only statistical uncertainties were considered when taking the ratio of the cross sections with the two polarisations. A clear indication of parity violation is seen as the cross section ratio deviates from unity and is well described by the SM evaluated using the ZEUS-JETS PDFs.

Figure 2 presents the reduced cross sections for unpolarised $e^{ \pm} p$ and the $x F_{3}$ measurements. The unpolarised $e^{-} p$ reduced cross sections are measured by combining the positive and negative polarisation samples, and correcting the residual polarisation of -0.06 . The reduced cross sections are compared with previously measured unpolarised $e^{+} p$ reduced cross sections taken in 1999 and 2000 [2]. A significant difference between the two data sets is seen at high Q^{2} due to the $x F_{3}$ contribution. The structure function $x F_{3}$ is extracted using the unpolarised $e^{ \pm} p$ reduced cross sections and is reproduced well by the SM.

4

Figure 2. The $e^{ \pm} p$ unpolarised reduced cross section, $\tilde{\sigma}$, plotted as a function of x in fixed Q^{2} bins is shown on the left. On the right is the structure function $x F_{3}$ plotted as a function of x in fixed Q^{2} bins. The curves on both plots show the SM prediction evaluated using the ZEUS-JETS PDFs.

Summary

The single differential cross section $d \sigma / d Q^{2}$ is presented for $e^{ \pm} p$ NC DIS separately for positively and negatively longitudinally polarised leptons. The $e^{-} p$ reduced cross sections corrected to zero polarisation are presented and have been combined with previously measured unpolarised $e^{+} p$ reduced cross sections to extract $x F_{3}$. The SM predictions describe the measurements well and this is the first time at ZEUS that parity violation can clearly be seen in the $d \sigma / d Q^{2}$ measurement.

References

1. ZEUS Collab., S. Chekanov etal., Preprint hep-ex/0402026, 2006. Accepted by Phys. Lett. B
2. ZEUS Collab., S. Chekanov etal., Phys. Rev. D 70, 052001 (2004)
