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We summarize the main features of our approach to parton fitting, and we show
a preliminary result for the non-singlet structure function. When comparing our
result to other PDF sets, we find a better description of large x data and larger
error bands in the extrapolation regions.

1. The NNPDF approach

The standard approach to PDF fitting has two main shortcomings. The first

is the difficulty in propagating the error from data to the parametrization,

and then from the parametrization to any observable that it is evaluated

with it: this is easy to do only in a linearized approximation, which is

not always adequate. The second is the difficulty in assessing the bias

associated to the choice of functional form, which is done on the basis of

theoretical prejudice. The latter is especially delicate, because a functional

form parametrized by a small number of parameters must be chosen in

order for the fits to converge, but this is then inevitably a source of bias: a

bias free fit would never converge.

1



July 7, 2006 8:37 Proceedings Trim Size: 9in x 6in sf˙piccione

2

We have proposed a new approach to this problem 1,2, which is based

on the use of neural networks combined with the Monte Carlo method.

The Monte Carlo approach addresses the first difficulty of the standard

approach. Instead of propagating the experimental error on the parameters

of the parton distributions, we generate replicas of the true experimental

data, which fluctuate about the central experimental values in a way that

reproduces the data uncertainty. If the number of replicas is sufficiently

large, averaging over the replicas we can reconstruct the data we started

from with their errors and correlations. Instead of producing a single set

of parton distributions, we then produce as many replicas of the parton

distributions as we generated replicas of the original data. The fluctuation

of these replicas then automatically propagates the fluctuations of the data

we started from, and averaging over them we can reconstruct the value

and uncertainty on the parton distributions, and indeed of any physical

observable which depends on them.

In order to avoid any assumption on the shape of the PDF at the initial

scale, for each replica we use a redundant parametrization provided by a

neural network. Neural networks are a class of algorithms designed in order

to extract information from noisy or incomplete data, without having to

make assumptions on the underlying law which is obeyed by the data.

The only assumption is a certain degree of smoothness of the function

which describes the data. Neural networks are non-linear functions defined

recursively as layers of nodes which receive inputs from others nodes, and

give an output which is fed to nodes of the next layer. As an example, in

a simple case with one input ξ
(1)
1 , two hidden neurons and one output ξ

(3)
1 ,

(1-2-1), we have
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where ω(i) (weights) and θ(i) (thresholds) are the parameters of the i-th

layer. Data are fitted evolving the PDF from the initial scale to the scale

of data, and comparing a physical observable thus computed to the data in

order to tune the best-fit form parameters of the input PDF, now given by

a neural network.

When a large number of parameters is fitted and when correlations be-

tween them are large, as it is the case with a redundant parametrization,

the usual minimization techinques are not optimal. We have thus imple-

mented a Genetic Algorithm technique 3, based on mutation and selection



July 7, 2006 8:37 Proceedings Trim Size: 9in x 6in sf˙piccione

3

of copies of a given parameters set. The main advantage of the genetic

minimization is that it works on a population of solutions, rather than

tracing the progress of one point through parameter space. Thus, many

regions of parameter space are explored simultaneously, thereby lowering

the possibility of getting trapped in local minima.

The feature of neural networks which solves the problems of the bias

imposed by a choice of functional form is the fact that the minimization

of a very redundant neural network can be performed, and stopped when

a suitable criterium is met, but before the minimum χ2 is reached. This

is to be contrasted with standard fits, where one reaches the lowest χ2

compatible with the given functional form, and eventually if one increases

the size of the fitting function no stable fit can be obtained. The stopping

criterium is the following. For each replica we separate randomly data into

two sets: one of them is fitted and the other one is predicted. Since both

sets represents the same physical quantity, the accuracy on both must be

same. When χ2 on the trained set goes on improving, while on the predicted

one starts growing or oscillating, we stop the minimization. From then on

the fit would only be learning the noise of the fitted set.

2. Results
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Figure 1. NNPDF best-fit of the non-singlet structure function at 31GeV 2 < Q2 <

33GeV 2 compared to other PDF sets. Our 1-σ error band has been evaluated with 1000
replicas; the initial scale PDF is a (2-5-3-1) neural network.

A full determination of FNS
2 (x, Q2) = F

p
2 (x, Q2) − F d

2 (x, Q2) has been
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performed with this method. We show our best-fit for a given Q2 bin

compared to the results obtained by different PDF sets 4,5,6. From Fig. 1

we can see that the experimental points have large errors due to the fact

we are taking a difference between two measurements, while the predictions

given by the PDF sets have smaller errors, since they combine different

measurements for the same points, and since due to evolution points with

larger/smaller x and Q2 carry the same amount of information of the ones

shown in the plot. In the extrapolation region at small x the different

behavior between the Alekhin’s fit and the other sets is due to the fact that

Alekhin does not assume any Regge-like constraint. If no assumption is

made on the shape of the PDF, we obtain a result which agrees both with

data and with the other sets within errors, describes better the large x

range and predicts a larger uncertainty where there are no data. One may

argue that our error band is wider than the other PDF sets since these are

obtained by fitting much more data than us. However, since this flavour

combination is only constrained by the non-singlet data which we also use,

the small error bands obtained with the standard approach are more likely

due to the way errors are propagated and to choice of a particular functional

form for the initial PDF. Other examples of the underestimation of errors

have been shown in 7, where a larger error for the Gottfried sum rule is

obtained once the propagation of errors is performed without a linearized

approximation, and in 8, where a larger error on αs is obtained once no

assumption on the PDF shape is made to fit data.

Further details on our techique and more results will be given in a

forthcoming paper.

References

1. S. Forte, L. Garrido, J. I. Latorre and A. Piccione, JHEP 0205, 062 (2002).
2. L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione and J. Rojo [NNPDF

Collaboration], JHEP 0503, 080 (2005).
3. J. Rojo and J. I. Latorre, JHEP 0401, 055 (2004).
4. S. Alekhin, Phys. Rev. D 68, 014002 (2003).
5. J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky and W. K. Tung,

JHEP 0207, 012 (2002).
6. A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur. Phys. J.

C 28, 455 (2003).
7. R. Abbate and S. Forte, Phys. Rev. D 72, 117503 (2005).
8. S. Forte, J. I. Latorre, L. Magnea and A. Piccione, Nucl. Phys. B 643, 477

(2002).


