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REVIEW ON HARD EXCLUSIVE REACTIONS

M. DIEHL

Deutsches Elektronen-Synchroton DESY, 22603 Hamburg, Germany

I discuss selected aspects of hard exclusive processes, focusing on the impact pa-

rameter representation.

In recent years, important results have been obtained in the theory of

hard exclusive reactions. Given the limited space I will concentrate here on

the concept of impact parameter, which allows for a simple and physically

intuitive description of high-energy phenomena in different contexts. The

impact parameter of a particle is obtained by Fourier transform with respect

to the transverse momentum, |p+, b〉 = (2π)−2
∫

d2p e−ibp |p+, p〉, where p+

is the light-cone momentum. One then has a mixed representation of states

with definite momentum in the light-cone direction and definite position b

in the transverse plane. For a multi-particle system, the impact parameter

turns out to be the weighted average of all particles, with the weights given

by their light-cone momenta, b =
∑

i
p+

i
bi /

∑
i
p+

i
[1].

1. Impact parameter in the dipole representation

The impact parameter plays a special role in small-x physics because, unlike

transverse momentum, it is conserved in the high-energy limit. Consider

for instance the imaginary part of the forward Compton amplitude (which

gives the inclusive DIS cross section via the optical theorem). In the lead-

ing logarithmic BFKL approximation, it can be written in terms of the

transverse momentum dependent gluon density f(x, l) and of photon-gluon

scattering via a quark loop, see Figure 1a. By a Fourier transform one can

trade the loop integration over the transverse quark momentum k for the

integral over the transverse distance r between the quark and antiquark.

To leading logarithm in the collision energy, one can neglect the kinematic

correlation between k and the gluon momentum fraction x, taking the gluon

density at the Bjorken variable xB . With this approximation, the trans-

verse distance between the quark and antiquark is the same before and after
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Figure 1. a: Graph for the Compton amplitude in the BFKL framework. b: Emergence

of the quark distribution in the aligned-jet configuration with z → 1.

the scattering [2]. The DIS cross section can then be written in terms of

the squared photon wave function and the cross section for the scattering

of a quark-antiquark color dipole with size r on the proton target. Note

that this dipole formulation has not been extended as yet to the accuracy

of next-to-leading log x.

An analogous discussion holds for the amplitude of DVCS (γ∗p → γp)

or meson production with a hard scale (e.g. γ∗p → ρp or γp → J/Ψp). By a

Fourier transform one can now also trade the transverse momentum transfer

∆ to the proton for the impact parameter b, which gives the transverse dis-

tance between the colliding photon and proton. The scattering amplitude

is then described in terms of the wave functions for the incoming photon

and the outgoing photon or meson, and of the amplitude N(xB , r, b) for

the scattering of a quark-antiquark dipole with size r and distance b from

the proton target (see e.g. [3]).

2. Impact parameter in collinear factorization

Hard exclusive processes like DVCS and meson production can be described

in collinear factorization, where the long-distance physics on the proton side

is described by generalized parton distributions (see e.g. [4] for recent re-

views). This description requires a large virtuality, but it is valid beyond

the high-energy limit and can be applied both at fixed-target and collider

energies. Fourier transform with respect to ∆ gives parton distributions in

impact parameter space, where b is the transverse distance of the struck

quark or gluon from the center of the proton [5]. The role of skewness, i.e.,

of a finite momentum transfer in the light-cone direction is discussed in [6].

Combining the information on b and on the light-cone momentum fraction

of the partons, one obtains three-dimensional “tomographic images” of the

nucleon. The dependence of impact parameter distributions on the resolu-
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tion scale is given by evolution equations. From those it is straightforward

to obtain evolution equations for the average squared impact parameter

〈b2〉 of partons with given parton momentum fraction [7].

3. Relating the two formulations

In the leading double logarithmic approximation (log x log Q2) the two de-

scriptions just discussed coincide. To leading log x, the gluon density in

the collinear factorization formula for DIS can be evaluated at xB , and in

generalized parton distributions the effect of skewness becomes negligible.

In the dipole formulation, the large Q2 limit selects small values of

z(1 − z)r2, where z is the light-cone momentum of the quark with respect

to the virtual photon. For configurations with z ∼ 1

2
the typical size r

of the color dipole then tends to zero, and the dipole expression can be

matched to the contribution of the usual or generalized gluon distribution

in the collinear factorization formula. For aligned-jet configurations where

z → 1 the typical dipole size r remains large, and a proper factorization into

short and long distance quantities leads to the usual or generalized quark

distribution, see Figure 1b. For aligned-jet configurations where z → 0 one

obtains antiquark distributions. In all cases the meaning of b in the dipole

and the collinear formulation coincides: the distance between color dipole

and target equals the distance of the struck gluon, quark or antiquark from

the target center.

4. Experimental results on the t dependence

The dependence of exclusive cross sections on the invariant momentum

transfer t is conveniently parameterized by an exponential dσ/dt ∝ e−B|t|

at small t. Recalling that t ≈ −∆2 at small x, one finds that the average

squared impact parameter at amplitude level is 〈b2〉 = 2B. The measured

t slopes B in ρ and φ production strongly decrease with Q2 (see e.g. [8]). In

the dipole formulation this is understood as the slow decrease with Q2 of

the typical dipole size r resulting from the overlap of the meson and virtual

photon wave functions. As long as this size is not small on a hadronic scale,

one has large corrections to the collinear factorization formulae. Within

experimental errors, the t slope in J/Ψ production shows little variation

with Q2 over the entire range from photoproduction to 16 GeV2. This

suggests that the charm quark mass is quite efficient in selecting small

dipole sizes, and that collinear factorization may be applicable here down

to Q2 = 0. This is corroborated by the steep rise of the cross section with
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the photon-proton c.m. energy W . Results of fits to σ(γp → J/Ψp) ∝ W δ

are δ = 0.69±0.02±0.03 from ZEUS and δ = 0.75±0.03±0.03 from H1 [9].

Values of the t slope in photoproduction are B = (4.15± 0.05+0.30
−0.18) GeV−2

from ZEUS and B = (4.630 ± 0.060+0.043

−0.163) GeV−2 from H1, both at W =

90 GeV [9].

The t slope in DVCS turns out to be larger, with B = (6.02 ± 0.35 ±

0.39) GeV−2 at Q2 = 8 GeV2 and W = 82 GeV [10]. Within the dipole for-

mulation, this may be understood as due to the contribution from aligned-

jet configurations with their large average r. In the language of collinear

factorization, it may be due to the contribution from sea quarks (at suf-

ficiently large Q2 the sea quark distribution is smaller than the one for

gluons, but the latter appears with an extra factor of αs in the Compton

amplitude). From this point of view, the combination of t slopes measured

in J/Ψ production and DVCS gives information on the typical impact pa-

rameters of small-x gluons and quarks. An interesting observation [11] is

that DVCS has a larger t slope than J/Ψ production but an equally steep

energy dependence, with δ = 0.77 ± 0.23 ± 0.19 at Q2 = 8 GeV2 [10]. A

consistent quantitative description of both processes will be a challenge for

both the dipole and the collinear formulation.
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