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Following recent progresses in the understanding of high-energy scattering in QCD,
we derive the first phenomenological consequences of Pomeron loops, in the context
of both inclusive and diffractive deep inelastic scattering. In particular, we discuss
diffusive scaling, a new scaling law that emerges for sufficiently high energies and
up to very large values of Q2, well above the proton saturation momentum.

1. Introduction

The Good-and-Walker picture of diffraction was originally meant to de-

scribe soft diffraction. They express an hadronic projectile |P 〉=∑

n cn|en〉
in terms of hypothetic eigenstates of the interaction with the target |en〉,
that can only scatter elastically: Ŝ|en〉=(1−Tn)|en〉. The total, elastic and

diffractive cross-sections are then easily obtained:

σtot = 2
∑

n

c2
nTn σel =

[

∑

n

c2
nTn

]2

σdiff =
∑

n

c2
nT 2

n . (1)

It turns out that in the high energy limit, there exists a basis of eigen-

states of the large−Nc QCD S−matrix: sets of quark-antiquark dipoles

|en〉= |d(r1), . . . , d(rn)〉 caracterized by their transverse sizes ri. In the con-

text of deep inelastic scattering (DIS), we also know the coefficients cn to

express the virtual photon in the dipole basis. For instance, the equivalent

of c2
1 for the one-dipole state is the photon wavefunction φ(r, Q2).

This realization of the Good-and-Walker picture allows to write down

an exact (within the high-energy and large−Nc limits) factorization for-

mula 1 for the diffractive cross-section in DIS in terms of dipole scattering

amplitudes off the target proton, such as 〈T (r1) . . . T (rn)〉Y . The average

〈 . 〉Y is an average over the proton wavefunction which gives the energy

dependence to the cross-section (Y =log(1/x)∼ log(s) is the rapidity).
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2. The geometric and diffusive scaling regimes

Within the high-energy and large−Nc limits, the dipole amplitudes are

obtained from the Pomeron-loop equation 2 derived in the leading logarith-

mic approximation in QCD. This is a Langevin equation which exhibits the

stochastic nature 3 of high-energy scattering processes in QCD. Its solution

is an event-by-event dipole scattering amplitude function of ρ=− log(r2Q2
0)

and Y (Q0 is a scale provided by the initial condition). It is characterized

by a saturation scale Qs which is a random variable whose logarithm is

distributed according to a Gaussian probability law 4. The average value

is log(Q̄2
s/Q2

0) = λY and the variance is σ2 = DY (see Fig.1). The disper-

sion coefficient D allows to distinguish between two energy regimes: the

geometric scaling regime (DY ≪1) and diffusive scaling regime (DY ≫1).

The following results for the averaged amplitude will be needed to derive

the implications for inclusive and diffractive DIS:

〈T (r1) . . . T (rn)〉Y
Y ≪1/D

= 〈T (r1)〉Y . . . 〈T (rn)〉Y , (2)

〈T (r1) . . . T (rn)〉Y
Y ≫1/D

= 〈T (r<)〉Y , r< = min(r1, . . . , rn) . (3)

All the scattering amplitudes are expressed in terms of 〈T (r)〉Y , the ampli-

tude for a single dipole which features the following scaling behaviors:

〈T (r)〉Y
Y ≪1/D≡ Tgs(r, Y ) = T

(

r2Q̄2
s(Y )

)

, (4)

〈T (r)〉Y
Y ≫1/D≡ Tds(r, Y ) = T

(

log(r2Q̄2
s(Y ))√

DY

)

. (5)

DY

Y
rT )(

Y1

Y2 >Y1 

1DY 2DY

( )12 YY −λ [ ]2
0

2 Qln r−

Figure 1. Left plot: a diagram representing the stochastic saturation line in the (ρ, Y )
plane, the diffusive saturation boundary is generated by the evolution. Right plot: differ-
ent realizations of the event-by-event scattering amplitude (gray curves) and the result-
ing averaged physical amplitude 〈T (r)〉 (black curve) as a function of ρ for two different
values of Y in the diffusive scaling regime.
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3. Implications for inclusive and diffractive DIS

We shall concentrate on the diffusive scaling regime, in which the dipole

scattering amplitude can be written as follows 5 for − log(r2Q̄2
s(Y ))≪DY :

Tds(r, Y ) =
1

2
Erfc

(

− log(r2Q̄2
s(Y ))√

DY

)

. (6)

From this, one obtains the following analytic estimates 1 for the γ∗−p total

cross-section in DIS and for the diffractive one integrated over β from β< :

dσtot

d2b
(x, Q2) =

Ncαem

12π2

∑

f

e2
f

√

πD log(1/x)
e−Z2

Z2
, (7)

dσdiff

d2b
(x, Q2, β<) =

Ncαem

48π2

∑

f

e2
f

√

D log(1/x)
e−2Z2

Z3
. (8)

The variable Z is reminiscent of the scaling variable of the dipole amplitude:

Z =
log(Q2/Q̄2

s(x))
√

D log(1/x)
(9)

and shows that in the diffusive scaling regime, both inclusive and diffractive

scattering are dominated by small dipole sizes r ∼ 1/Q. Also the cross-

sections do not feature any Pomeron-like (power-law type) increase with

the energy and the diffractive cross-section (which does not depend on

β<) is dominated by the scattering of the quark-antiquark (qq̄) component,

corresponding to β . 1. These features a priori expected in the saturation

regime (Q2 < Q̄2
s) are valid up to values of Q2 much bigger than Q̄2

s : in

the whole diffusive scaling regime for log(Q2/Q̄2
s(Y ))≪DY (see Fig.2).

Figure 2. A phase diagram for the high-energy limit of inclusive and diffractive DIS
in QCD. Shown are the average saturation line and the approximate boundaries of the
scaling regions at large values of ρ∼ lnQ2. With increasing Y, there is a gradual transition
from geometric scaling at intermediate energies to diffusive scaling at very high energies.
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Figure 3. The integrands of (10) plotted as a function of rQ̄s and computed with two
expressions for the dipole amplitude: in the geometric and diffusive scaling regimes.

The inclusive cross-section and the qq̄ contribution to the diffractive one

are obtained from the dipole amplitude 〈T (r)〉Y in the following way:

dσtot

2π d2b
=

∫

dr2Φ(r, Q2)〈T (r)〉Y ,
dσdiff

π d2b
=

∫

dr2Φ(r, Q2)〈T (r)〉2Y . (10)

In order to better exhibit the dominance of small dipole sizes r∼1/Q,

we represent in Fig.3 the integrands of (10) as a function of the dipole size

r. Keeping Q/Q̄s =10 fixed, we use (6) in the diffusive scaling regime and

Tgs(r, Y )=1−e−r2Q̄2

s
(Y )/4 in the geometric scaling regime. The difference

between the geometric and diffusive scaling is striking. For the latter, both

inclusive and diffractive scattering are dominated by inverse dipole sizes

of the order of the hardest infrared cutoff in the problem: the hardest

fluctuation of the saturation scale, which is as large as Q.

In the diffusive scaling regime, up to values of Q2 much bigger than the

saturation scale Q̄2
s, cross-sections are dominated by rare events in which

the photon hits a black spot that he sees at saturation at the scale Q2. In

average the scattering is weak, but saturation is the only relevant physics.
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