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We report on a new method for the numerical evaluation of loop integrals in di-
mensional regularization developed in hep-ph/0511176 1.

1. Introduction

Perturbative calculations play a crucial role in our current understanding

of particle interactions. At the TeV energy frontier, many processes with

high final-state multiplicity, number of loops and kinematic scales are im-

portant for precision studies and searches of physics beyond the Standard

Model. We present a method aimed to compute loop amplitudes for such

complicated processes.

The calculation of loop integrals gets involved due to the appearance of

infrared singularities that must be regulated and made explicit. In multi-

scale processes, the analytic structure in the kinematical parameters also

posses formidable difficulties both for the calculation and for the extension

of the results to the regions of physical interest. Additionally, gauge theories

give rise to integrals with tensor numerators, that in traditional approaches

are reduced, proliferating the number of terms.

We present a method for the calculation of loop integrals based on

Mellin-Barnes representations. Such representations have been already em-

ployed successfully in several complicated calculations 2,3,4,5,6,7,8,11. In 2,3,

it has been shown how to extract infrared singularities exploiting the ana-

lytic properties of Mellin-Barnes contour integrals on the complex plane.
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Following the guidelines of 3 we developed an algorithm that autom-

atizes the procedure of extraction of infrared singularities from a given

Mellin-Barnes representation. The resulting contour integrals are then ex-

panded in power series of ε and evaluated by direct numerical integration

on the complex plane 1. A similar implementation has been presented in 12.

2. Outline of the method

Our starting point is the Feynman parameterization of a regulated loop

integral. By repeated use of the formula

1

(A1 + A2)
α =

1

2πi

∫ c+i∞

c−i∞

dwAw
1 A−α−w

2

Γ(−w)Γ(α + w)

Γ(α)
,

the Feynman parameters can be integrated out in terms of Gamma func-

tions, giving the Mellin-Barnes representation of the integral. As seen from

the formula above, this representation will involve integrals over paths in the

complex plane. The contours must be chosen such that, for each Gamma

function in the integrand, all its poles lie on the same side of the contours.

For divergent integrals this can only be satisfied for values of ε different

from 0. When taking the limit ε → 0, some of the poles of the Gamma

functions cross the contours, changing the value of the integral and thus

invalidating the representation.

This feature can be used to extract the singularities in ε by simply

accounting for the residues on the poles that crossed the contour. The final

result consists in the original integral, now valid in the region ε ' 0, plus the

sum of the residues. These last terms involve less Mellin-Barnes integrals

than the original representation. All the pieces can be safely expanded in

powers of ε, the poles appearing in the residues, in the form of factorized

Gamma functions. In 1, this procedure has been fully implemented into

a set of MATHEMATICA and MAPLE routines, allowing for a fast analytic

continuation.

The case of loop integrals with tensor numerators can also be efficiently

handled within this approach. The representations for these integrals co-

incide with the one for the scalar case, evaluated with shifted space-time

dimension, times a polynomial in the Mellin-Barnes variables. As the only

additional factor is an analytic function, the analytic continuations has to

be performed only once, keeping a general polynomial. Whole diagrams

can be evaluated at the same time without resourcing to any reduction

procedure.
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We found that the contour integrals obtained after the analytic contin-

uation are very well suited for direct numerical integration. When there

are no masses in the internal lines, the integrands vanish fast when moving

away from the real line. Gamma functions arising when integrating over

the Feynman parameters are crucial for this damping. The integrals can,

then, be reliably evaluated in all kinematic regions by direct integration.

The only analytic continuation in the kinematical variables needed is for

simple logs and powers, no polylogarithms involved.

Integrals with massive internal lines are more delicate. Internal masses

generate terms linear in the Feynman variables. After integration, these

produce a deficit of Gamma functions in the numerator of the integrand

and additional Gamma functions in the denominator, spoiling the damping

away from the real line. However, we have found that several cases of

physical interest, not involving thresholds, are perfectly suited for numerical

integration.

We have implemented routines that completely automatize the steps for

handling tensor integrals and producing FORTRAN code to perform the

numerical evaluation of the contour integrals.

3. Applications

In order to show the power of the method outlined above, we have applied it

to calculate a set of one, two and three loop integrals. The studied integrals

give rise to Mellin-Barnes representations of high dimensionality and, in

many cases the final expressions, after the analytic continuation, involve

up to hundreds of terms. This stresses the advantage of the automatic

algorithm we described, since the book-keeping is done automatically and

our routines perform the ε expansion in fractions of a minute.

To test the method, we applied it to one loop hexagon tensors. As men-

tioned, the method does not involve any reduction. Analytic continuation

of Mellin-Barnes representations, followed by direct numerical integration

proved to be perfectly suited for the evaluation of tensors of up to rank six.

We also performed several comparisons to existing results for box inte-

grals with two and three loops, these included the on-shell, massless planar

double box computed in 2, the crossed double box 3, the double box with

an off-shell leg 13,6,14, and the on-shell massless triple box calculated ana-

lytically in 7. In all these cases, our method provided fast evaluations in

different kinematical regions, with errors in the numerical integration at

the per mill level or better.
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In 1, we presented the first calculation of the double box with two ad-

jacent massive legs in the physical region. Results in the euclidean region

agreed with the ones of 15. Again, our codes proved to be efficient at han-

dling this difficult integral providing results with errors typically under the

1% level for the constant pieces in ε.

At the three loops level, we also took a further step and performed the

first calculation for a triple box with one leg off-shell. Our results are valid

in all physical regions with errors in the per cent range or better.
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