
July 11, 2006 11:19 Proceedings Trim Size: 9in x 6in hfs-andersen

MULTI-JET PROCESSES IN THE HIGH ENERGY LIMIT

OF QCD

JEPPE R. ANDERSEN

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue

CB3 0HE, Cambridge, UK

We discuss how the multi-Regge factorisation of QCD amplitudes can be used in
the study of multi-jet processes at colliders. We describe how the next-to-leading
logarithmic (NLL) BFKL evolution can be combined with energy and momentum
conservation. By recalculating the quark contribution to the next-to-leading loga-
rithmic corrections to the BFKL kernel we can study several properties of the NLL
corrections. We demonstrate that in the standard analysis, the NLL corrections
to a single gluon emission includes contributions from significantly more energetic
quark–anti-quark configurations, something that could contribute to the sizable
NLL corrections in the standard BFKL analysis.

1. Introduction

One of the many immediate challenges for QCD is to provide a reliable
description of the multiple hard jet environment which is to be expected
at the LHC. Besides posing a very interesting problem in itself, the QCD
dynamics will provide signals similar to that of many sources of physics
beyond the standard model, and so is very important to understand in
detail. An intriguing alternative to the standard approach of calculating the
production rate of a few hard partons by fixed order perturbation theory is
to use the framework arising from the multi-Regge form of QCD amplitudes
(recently proved at next-to-leading logarithmic accuracy1) to calculate the
emission of gluons (and quarks at next-to-leading logarithmic accuracy)
from the evolution of an effective, Reggeized gluon (Reggeon) propagator.
The starting point here is the observation that for e.g. 2→2, 2→3, . . . gluon
scattering, Feynman diagrams with a t-channel gluon exchange dominate
the partonic cross section, in the limit where the rapidity span of the two
leading gluons is large. This t-channel gluon is then evolved according to the
BFKL equation, and will emit partons accordingly. Starting from the 2→2–
gluon exchange, the 2→2+n gluon scattering process can be calculated in
the limit of large rapidity spans ∆y, thanks to the Regge factorisation of the
colour octet exchange. Obviously, this means that the formalism is relevant
only if there is sufficient energy at colliders to have multiple emissions
spanning large (≥ 2) rapidity intervals. In this high energy limit, the
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partonic cross section for 2→2+n gluon scattering (pa′ , pb′ → pa, {pi}, pb)
factorises as

dσ̂(pa, {pi}, pb) =Γa′a

 

n
Y

i=1

eω(qi)(yi−1−yi)

q
2
i

V
Ji(qi,qi+1)

!

eω(qn+1)(yn−yn+1)

q
2
n+1

Γb′b

(1)

where qi = −
(

pa +
∑i−1

l=1 pl

)

, pa, pb is the momentum of the partons

furthest apart in rapidity, and Γa′a, Γb′b are the process dependent im-

pact factors (the momentum dependence has been suppressed in Eq. (1)).

V Ji(qi,qi+1) denote the effective Lipatov vertices at LL or NLL. It is of

course possible to study other processes such as W + n jets, n ≥ 2 (see

Ref. 2) within this framework by substituting the relevant impact factors

in Eq. (1). The sum over any number of gluon emissions, with their phase

space integrated to infinity, can be found by substituting for all but the

impact factors in Eq. (1) the solution f(ka,kb, ∆y), ∆y = y0−yn+1, to the

BFKL equation. This is what traditionally is done in BFKL phenomenol-

ogy, since it allows for analytic results to be readily obtained. The huge

rise in cross sections driven by the leading logarithmic evolution is due in

parts to these unconstrained phase space integrations, and it is clear there

can be large corrections if the phase space integrals are constrained to the

physical phase space.

2. Combining BFKL Evolution with Energy and

Momentum Conservation

At leading logarithmic accuracy, the task of combining energy and mo-

mentum conservation with BFKL evolution thus becomes a question of

integrating Eq. (1) over only the available phase space for a given pro-

cess. This is equivalent to performing a leading logarithmic approxima-

tion to the 2 → 2 + n matrix element, without the further phase space

approximation inherent when using the standard solution to the BFKL

equation. Technically, this is most conveniently performed by the direct

solution to the BFKL evolution3 — the framework of the BFKL equa-

tion provides a convenient prescription for regularising the singularities in

Eq. (1), while the direct solution is a numerically efficient and physically

intuitive approach to performing the sum over any number of emissions and

their phase space integral. Please refer to Ref. 3 for further details. The

processes for pure multi-jets, and forward W + (2 + n)-jets have been im-

plemented according to this formalism, and the computer code is available

at http://www.hep.phy.cam.ac.uk/~andersen/BFKL.
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2.1. Next-to-Leading Logarithmic Evolution

The first step towards combining the BFKL evolution with energy and mo-

mentum conservation was taken when the BFKL equation was solved to

next-to-leading logarithmic accuracy in an iterative framework4,5. How-

ever, at next-to-leading logarithmic accuracy it is no longer sufficient to

use the regularised versions of the effective vertex and trajectory arising

in the iterative approach, as derived from the BFKL kernel6,7 (which is

the case at leading logarithmic accuracy8,9). This is because the contribu-

tions to the NLL BFKL kernel already includes unconstrained phase space

integrals over two-particle states. In order to combine the evolution at next-

to-leading logarithmic accuracy with energy and momentum conservation,

it is therefore necessary to re-calculate the next-to-leading logarithmic con-

tribution to the BFKL kernel, but leave the phase space integrals within

each Lipatov vertex undone, and furthermore perform the regularisation of

the amplitudes using phase space slicing.

The contribution to the NLL vertex from quark–anti-quark production

is given by

K(2),qq̄
r (q1,q2) =

1

2q2
1q
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2
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∫

dκ dρf δ(D)(q1 − q2 − k1 − k2)

∑
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∣
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∣

∣

2 (2)

where the sum is over spin, colour and flavour states of the produced quark–

anti-quark pair, κ = (q1 − q2)
2 = (k1 + k2)

2 is the invariant mass, and

dρf =
∏

n=1,2

dD−1kn

(2π)D−12En

. (3)

q1, q2 is the momentum of the Reggeons, while k1, k2 is the momentum

of the produced quark and anti-quark, and the form of the amplitude

γqq̄
i1i2

(q1, q2, k1, k2) can be obtained either from the effective Feynman rules

for the Regge limit of QCD10 or by considering the high energy limit of the

tree level gg → ggqq̄ matrix element11.

The 1/N2
c –suppressed contribution to the square of the amplitude is

IR-finite, and so the results of a numerical integration can be directly com-

pared to the results in Ref.12. We find complete agreementa. Using the

phase space slice regulated integral of Eq. (2) combined with the quark-

contribution to the NLL corrections to the one-gluon production vertex, it

aThe agreement is complete, once a misprint in Eq. (23) of Ref.12 is corrected
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then becomes possible to study the final state configuration of the quark–

anti-quark contribution to the NLL vertex. For a given q1,q2, the leading

logarithmic contribution to the Lipatov vertex comes from the emission of

a single gluon of energy |ki|2 = |q1 − q2|2. However, at NLL there will be

a spread in the energy of the quark–anti-quark pair. For q1 = (20, 0) GeV

and q2 = (0, 20) GeV we find that the average value of the energy of the

qq̄-pair is 40 GeV(see Fig. 1) , and the average rapidity separation between

the quark and anti-quark is .56 units of rapidity. The standard calcula-

tion of the NLL corrections to the kernel for the emission of a 20
√

2 GeV

gluon therefore includes corrections from significantly larger energies, and

configurations which would usually be described as two separate jets.

This is clearly uncomfortable, and

could be contributing to the sizable

NLL corrections found in the stan-

dard analysis. However, the ap-

proach outlined here will allow for

such effects to be properly taken

into account, by combing energy

and momentum conservation with

the NLL BFKL evolution of the t–

channel gluon. Furthermore, proper

jet-definitions can be applied to the

study of the multiple hard jets of the

processes.
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Figure 1. The quark–anti-quark contribu-
tion to the NLL vertex as a function of the
energy of the qq̄–pair for q1 = (20, 0) GeV,
q2 = (0, 20) GeV, which at LL would be
ascribed to the emission of a single gluon of√

2 · 20 ≈ 28 GeV.
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