CHARM SPECTROSCOPY, CHRAM DECAYS AND NEW STATES AT BABAR.

M. SALEEM

From the BABAR Collaboration, Dept. of Electronics and Computer Engineering, Brunel University, Uxbridge, Middx UB8 3PH, England. E-mail: saleem@slac.stanford.edu

This document presents the recent studies of Charmed hadrons at *BABA*R BELLE and CLEO. Here I focus on the recent developments on the study of D_{sJ}^* , observation of $D^+ \to K^+ \pi^0$, $D^0 - \overline{D^0}$ mixing in the doubly cabibbo-suppressed decays using $D^0 \to K^+ \pi^+ \pi^0$ and the measurement of the decay constants using the leptonic D decays.

1. Introduction

At the B-factories, charm states are produced in $e^+e^- \rightarrow c\overline{c}$ continuum events, in the e^+e^- annihilation following the initial state radiations(ISR), in $e^+e^- \rightarrow e^+e^-c\overline{c}$ two-photon events, and in the *B* decays proceeding through the dominant $b \rightarrow c$ transition.

2. Study for the D_{SJ} states

The $D_{sJ}^*(2317)^+$ and $D_{sJ}^*(2460)^+$ mesons were first reported by the BABAR collaboration ¹ and the CLEO collaboration ² in $c\overline{c}$ continuum events. and then by the BELLE collaboration ³ in *B* decay.

The masses of these states are unusual than explained by the potential model for the $c\overline{s}$ system.⁴ The narrow widths of these states can be explained with the isospin-violating or electro-magnetic decays, which are kinematically allowed. Also the decay pattern and angular distribution for the $D_{sJ}^*(2317)^+$ and $D_{sJ}^*(2460)^+$ are consistent with their interpretation as conventional P-wave $c\overline{s}$ mesons with $J^P = 0^+$ and $J^P = 1^+$, respectively.

BABAR has recently updated this analysis using 232fb^{-1} of data and has performed a detailed study ⁵ of D_{sJ} decays to D_s^+ plus one or two charged pions, neutral pions, or photons. The $D_{sJ}^*(2317)^+$ is seen in one $\mathbf{2}$

only channel: $D_{sJ}^*(2317)^+ \to D_s^+ \pi^0$, which is the only allowed channel leading to the discovery of $D_{sJ}^*(2317)^+$. Searches in all other channels yield only upper limits. *BABAR* measures the $D_{sJ}^*(2317)^+$ mass and width: $m = (2319.6 \pm 0.2 \pm 1.4) \text{MeV}/c^2$, $\Gamma < 3.8 \text{MeV}@95\%$ C.L. A Search for neutral or doubly-charged partners of the $D_{sJ}^*(2317)^+$ in $D_s^+\pi^\pm$ modes leads towards the non-existence of such states, which concludes that $D_{sJ}^*(2317)^+$ is an isoscalar.

Belle has studied the decay angular distribution ⁶ for $D_{sJ}^*(2317)^+$ in $B \to \overline{D}D_{sJ}^*(2317)^+$, $D_{sJ}^*(2317)^+ \to D_s^+\pi^0$. The helicity distribution for the $D_{sJ}^*(2317)^+ \to D_s^+\pi^0$ is found to be consistent with spin 0 and inconsistent with spin 1 hypothesis, indicating that $D_{sJ}^*(2317)^+$ is $J^P = 0^+$ particle. BABAR has observed the $D_{sJ}^*(2460)^+$ in three different modes: $D_s^+\gamma$, $D_s^*(2112)^+\pi^0$ with $D_s^*(2112)^+ \to D_s^+\gamma$, and $D_s^+\pi^+\pi^-$, and measures the ratio of the branching fractions(BFs):

$$\frac{B(D_{sJ}^*(2460)^+ \to D_s^+\gamma)}{B(D_{sJ}^*(2460)^+ \to D_s^+\pi^0\gamma)} = 0.337 \pm 0.036 \pm 0.038.$$

They also see a significant signal in $D_{sJ}^*(2460)^+ \rightarrow D_s^+\pi^+\pi^-$ with a decent peak for $D_{s1}(2536)^+$. No hint is found for the $D_{sJ}^*(2317)^+$ in this mass distribution. They measure the masses, widths more precisely for all these states charged final states: $m = (2460.2 \pm 0.2 \pm 0.8) \text{MeV}/c^2$, $\Gamma < 3.5 \text{MeV}@95\%$ C.L. and $m = (2534.6 \pm 0.3 \pm 0.7) \text{MeV}/c^2$, $\Gamma < 2.5 \text{MeV}@95\%$ C.L., respectively and also the BFs as follows:

$$\frac{B(D^{*_{sJ}}(2460)^+ \to D_s^+ \pi^+ \pi^-)}{B(D^{*_{sJ}}(2460)^+ \to D_s^+ \pi^0 \gamma)} = 0.077 \pm 0.013 \pm 0.008.$$

BELLE has studied the same resonance ⁶ in $B \to \overline{D}D^{*_{sJ}}(2460)^+$ decays with angular distribution for $D^*_{sJ}(2460)^+ \to D^+_s \gamma$ as well as $D^*_{sJ}(2460)^+ \to D^*_s(2112)^+\pi^0$. For the $D^+_s \gamma$ final state, the angular distribution is consistent with the spin-1 hypothesis and is inconsistent with the spin-2 hypothesis. The spin-0 hypothesis is ruled out by the conservation of angular momentum and parity, photon is missing the spin 0 state. Using the $D^*_s(2112)^+\pi^0$ final state to establish the spin parity for $D^*_{sJ}(2460)^+$ with $D^{*_s}(2112)^+\pi^0$ final state to establish the spin parity for $D^*_{sJ}(2460)^+$ with $D^{*_s}(2112)^+$; the distribution is found consistent with the $J^P = 1^+$ hypothesis and is pure S-wave between $D^*_s(2112)^+$ and the π^0 (although the appropriate combination of S- and D-wave could also produce similar distribution). The data is found to be inconsistent with the $J^P = 1^-$ hypothesis, concluding that $D^*_{sJ}(2460)^+$ is a spin 1 particle with positive parity.

3

BABAR has also studied for the first time the absolute BFs ⁷ for the $D_{sJ}^*(2460)^+$, with one *B* meson is fully reconstructed on one side and study the decays of the other $B \to D^{\pm/0}X$. Here they study the missing mass (m_x) recoiling against the charged or neutral *D* or D^* . Using BABARs previous study ⁸ on the exclusive BFs $B \to \overline{D}^{(*)}D^{*_{sJ}}(2460)^+$, $D^{*_{sJ}}(2460)^+$ to $(D_s^*(2112)^+\pi^0)/(D_s^+\gamma)$, obtains: $B(D^{*_{sJ}}(2460)^+ \to D^{*_s}(2112)^+\pi^0) = 0.56 \pm 0.13 \pm 0.09$, $B(D^{*_{sJ}}(2460)^+ \to D_s^+\gamma) = 0.16 \pm 0.04 \pm 0.03$

3. D meson study

BABAR has reported the first observation and measurement of the BF for the Cabibbo-suppressed decay ${}^9 D^+ \rightarrow K^+ \pi^0$ and also an improved measurement of the BFs measurement $D^+ \rightarrow \pi^+ \pi^0$, using the world average BF 10 for $B(D^+ \rightarrow K^- \pi^+ \pi^+)$: $B(D^+ \rightarrow K^+ \pi^0) = (0.246 \pm 0.046 \pm 0.024 \pm 0.016) \times 10^{-3}$, $B(D^+ \rightarrow \pi^+ \pi^0) = (1.22 \pm 0.10 \pm 0.08 \pm 0.08) \times 10^{-3}$, the last error is due to the experimental uncertainty in the $D^+ \rightarrow K^- \pi^+ \pi^+$ branching fraction measurement. CLEO_c has reported 11 the absolute BFs for several decays: $D^+ \rightarrow K^+ \pi^+ \pi^+$, $D^0 \rightarrow K^- \pi^0$, and for D_s^+ to $K_s K^+$, $K^+ K^- \pi^+$, $K^+ K^- \pi^+ \pi^0$, and $\pi^+ \pi^+ \pi^- {}^{12}$. They measure the absolute BFs: $B(D^+ \rightarrow K^- \pi^+ \pi^+) = (9.52 \pm 0.52 \pm 0.27)\%$, $B(D^0 \rightarrow K^- \pi^+) = (3.91 \pm 0.08 \pm 0.09)\%$. Over all error on the D_s^+ measurements is approximately 11\%, which cab be improved with more data.

4. $D^0 - \overline{D}^0$ Mixing

Charm mixing is characterized by a two parameters $x \equiv \frac{\Delta m}{\Gamma}$ and $y \equiv \frac{\Delta \Gamma}{2\Gamma}$, where $\Delta m(\Delta \Gamma)$ is the mass(width) difference between the two neutral Dmeson and Γ ; the average width is related to the life time, τ_{D^0} , as $\Gamma \cdot \tau_{D^0} = \hbar$. $D^0 - \overline{D}^0$ Mixing will only occur if either x or y are non-zero and new physics will emerge if $x \gg y$.

Using $234 \,\mathrm{fb}^{-1}$ of data, *BABAR* has presented a search for $D^0 - \overline{D}^0$ Mixing in the D^0 to $K\pi\pi^0$ and enhanced Cabibbo-favored rate using cuts on the Dalitz plot and suppressing the doubly-Cabibbo suppressed rate. For the CP conserving fit they find $R_M < 0.054\%$ with 95% C.L., and also data is found to be consistent with no mixing at 4.5% confidence.¹³

5. Leptonic D decays

A detailed study of the leptonic decays is one of the sources of progress in the heavy-flavor physics and provides an insight into the *B*-decay measurements

4

ws-procs9x6

and will help in mastering the knowledge of hadronic effects through decay constants f_{Ds} .

BABAR has measured ¹⁴ the ratio of the partial decay widths for $D_s^+ \rightarrow \mu^+ \nu_\mu$ to $D_s^+ \rightarrow \phi \pi^+$ and the decay constant $f_{D_s}:(281 \pm 17 \pm 6 \pm 19) \text{MeV}(a)$ best measurement so far). Using the previously measured $B(D_s^+ \rightarrow \phi \pi^+)^{15}$ they also measure the $B(D_s^+ \rightarrow \mu^+ \nu_\mu) = (6.5 \pm 0.8 \pm 0.3 \pm 0.9) \times 10^{-3}$, where the last error is due the uncertainty on $D_s^+ \rightarrow \phi \pi^+$ BFs.

CLEO_c has also reported ¹⁶ for the leptonic decay: $B(D^+ \to \mu^+ \nu_{\mu}) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$ and $f_{D^+} = (222.6 \pm 16.7^{+2.8}_{-3.4})$ MeV. The ratio of the BABAR value for f_{D_s} to f_D from CLEO_c measurement is: $\frac{f_{D_s}}{f_{D^+}} = 1.26 \pm 0.15$.

6. Conclusion

B-factories like *BABAR* and Belle has and excellent charm physics program. This document presents few results from B-factories as well as from $CLEO_c$. We can look forward to see and improve in our understanding of the standard model and beyond with the more data coming from these experiments.

References

- 1. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 90, 242001 (2003).
- 2. CLEO Collaboration, D. Bessen et al., Phys. Rev. D68, 032002 (2003).
- 3. BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 92, 012002 (2004).
- 4. S. Godfrey and N. Isgur, *Phys. Rev.* D32, 189 (1985).
- 5. BABAR Collaboration, B. Aubert et al., submitted to Phys. Rev. D.
- 6. BELLE Collaboration, K. Abe et al., BELLE-CONF-0461 (2004).
- 7. BABAR Collaboration, B. Aubert et al., submitted to Phys. Rev. Lett..
- 8. BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 181801 (2004).
- BABAR Collaboration, B. Aubert et al., submitted to Phys. Rev. Lett., hepex/0605044.
- 10. S. Eidelman et al., Phys. Lett. B592, 1 (2004).
- 11. Q. He et al., Phys. Rev. Lett. 95, 121801 (2005).
- S. Stone, "Hadronic Charm Decays and D Mixing," in Proc. of Flavor Physics and CP Violation Conference, Vancouver, 2006 [hep-ph/0605134].
- 13. M. Wilson, " $D^0 \overline{D^0}$ Mixing Results from BABAR by analysis of $D^0 \rightarrow K^+ \pi^+ \pi^0$ Dalitz plot regions," in Proc. of Flavor Physics and CP Violation Conference, Vancouver, 2006 [hep-ph/0605046].
- BABAR Collaboration, B. Aubert et al., submitted to Phys. Rev. Lett., hepex/0605044.
- 15. BABAR Collaboration, B. Aubert et al., Phys. Rev., D71, 091104 (2005).
- R. Poling, "CLEO_c Hot Topics," in Proc. of Flavor Physics and CP Violation Conference, Vancouver, 2006 [hep-ph/0606016].