TRANSVERSE SPIN PHYSICS AT PHENIX

K. TANIDA (FOR THE PHENIX COLLABORATION)
Kyoto University, Kyoto 606-8502, Japan
E-mail: tanida@nh.scphys.kyoto-u.ac.jp

Abstract

We report the transverse spin physics results of the PHENIX experiment. Using the collision of transversely polarized proton beams at $\sqrt{s}=200 \mathrm{GeV}$, we have measured single spin asymmetries $\left(A_{N}\right)$ of pions at central rapidity and neutrons at very forward region. We also discuss the prospects from the current and near future runs of the PHENIX experiment.

1. Physics Interests

The spin structure of transversely polarized nucleon is very attractive as it is expected to be different from the helicity structure of longitudinally polarized nucleon because of relativistic effect and thus it provides another key to understand the nature of the nucleon. Especially, transversity of quarks (δq) is a very important spin structure function as fundamental as helicity structure function $(\Delta q$ and $\Delta g)$. However, it is mostly unexplored and our knowledge is very poor.

In proton-proton collisions, transversity can give single spin asymmetries $\left(A_{N}\right)$ via Collins effect ${ }^{1}$ and double spin asymmetries $\left(A_{T T}\right)$ in various particle production channels initiated by (anti-)quarks. However, other mechanisms are possible to produce spin observables; in the case of A_{N}, especially, several mechanisms such as Sivers effect ${ }^{2}$, higher-twist effect ${ }^{3,4}$ are suggested. Therefore, we need measurements at various channels and kinematic regions to disentangle these mechanisms.

Transverse spin physics in proton-proton collision at very forward region is also interesting. In this region, reaction is dominated by soft and non-perturbative processes, and is often described by Regge theory. Spin observables give good test grounds for the Regge theory, because Pomeron exchange gives no spin-flip amplitude so that observables that require spinflip amplitude, such as A_{N}, are zero in naive expectations.

Figure 1. Preliminary result from 2005 data on A_{N} for single charged hadrons at midrapidity. Previous PHENIX result ${ }^{6}$ is also shown for comparison. Additional scaling errors of 20% (present result) and 30% (previous result) due to uncertainty in beam polarization are not shown on the figure.

2. The PHENIX Experiment

PHENIX is an experiment at the Relativistic Heavy Ion Collider (RHIC), and is specialized in the measurement of photons, electrons, and muons as well as high-transverse-momentum $\left(p_{T}\right)$ particles in collisions of heavy ions or polarized protons. It has a high rate capability and sophisticated trigger systems as well as with good particle identification, allowing measurement of rare processes. The PHENIX detector ${ }^{5}$ consists of two detector arms (Central Arms) to cover mid-rapidity region $(|\eta|<0.35)$, forward detectors (Muon Arms) for identifying and tracking muons in $1.2<|\eta|<2.4$, and several detectors to provide interaction triggers.

In PHENIX, following data were accumulated for transverse spin physics; in year 2001-2002, we took $0.15 \mathrm{pb}^{-1}$ with average polarization $\sim 15 \%$ at $\sqrt{s}=200 \mathrm{GeV}$. Another $0.15 \mathrm{pb}^{-1}$ was collected in 2005 with much better polarization $(\sim 47 \%)$ at the same energy. In addition, a few days of beam time was devoted to data taking at $\sqrt{s}=410 \mathrm{GeV}$. This year (2006) was the first run to accumulate a significant amount of data and we took $2.7 \mathrm{pb}^{-1}$ at $\sqrt{s}=200 \mathrm{GeV}$ and $20 \mathrm{nb}^{-1}$ at $\sqrt{s}=62.4 \mathrm{GeV}$ with good polarization ($\sim 60 \%$).

3. Results and Discussions

Figure 1 shows the preliminary result of A_{N} for inclusive charged hadrons in mid-rapidity from 2005 data. The fact that the detector acceptance

Figure 2. A_{N} of very forward neutrons at $\sqrt{s}=200 \mathrm{GeV}$ and $x_{F}>0.4$. Left: A_{N} of single neutrons. Right: A_{N} of neutrons when other particles are detected in the region of $3.0<|\eta|<3.9$.
is not left-right symmetric due to bend by magnetic field was taken into account by modifying the square-root formula. The obtained A_{N} was consistent with zero for both positive and negative hadrons. This result is also consistent with the previously published data ${ }^{6}$, which is plotted on Fig. 1 for comparison.

The present result is quite interesting in contrast with the results from forward region ${ }^{7,8,9}$. While A_{N} was as large as $\sim 10 \%$ for positive and neutral pions at $x_{F} \sim 0.3$ and $p_{T} \sim 1 \mathrm{GeV} / c$, the PHENIX results show that the A_{N} is zero within a few $\%$ at $x_{F} \sim 0$ for the same p_{T}. This might be related to the difference of dominant subprocesses ($q g$ in forward rapidity and $g g$ in mid-rapidity, respectively) in these two kinematic regions.

Figure 2 shows the A_{N} of very forward neutrons detected by hadron calorimeters called Zero Degree Calorimeter (ZDC) located at 18 m away from the collision point along the beam axis. Large asymmetry was observed in forward neutrons. This asymmetry was even larger when other particles were detected in both of the two the Beam-Beam Counters (BBC) covering the forward and backward regions of $3.0<|\eta|<3.9$ (see the right of Fig. 2). In both cases, A_{N} for backward neutrons was found to be consistent with zero within the statistical error.

An intersting question is how the asymmetry is produced. A hint may come from a measurement of A_{N} of coincident (unidentified) particles at BBC. A significant negative asymmetry was observed for forward

BBC , with a preliminary value of $-4.50 \pm 0.50 \pm 0.22 \%$. A smaller positive asymmetry was found for backward BBC, with a prelminary value of $2.28 \pm 0.55 \pm 0.10 \%$. These results are consistent with a naive picture of diffractive process, where N^{*} or Δ^{*} is produced with large A_{N} and then decays into neutron and other particles, but not consistent with a kickoutrecoil picture where negative neutron asymmetry is produced as a recoil of a particle production with large positive A_{N}.

Other hints on the mechanism can be obtained by measuring energy and p_{T} dependences of the asymmetry. For this purpose, we took data at different energies $(\sqrt{s}=410 \mathrm{GeV}$ and 62.4 GeV$)$. A quick analysis shows the asymmetry persists at these energies, and we are analyzing the data in detail to obtain quantitative result. Also, in this point of view, it is interesting that the asymmetry disappears for protons at $\eta=5.1$ as reported by BRAHMS ${ }^{7}$.

4. Future Prospects

With the high statistics data taken in 2006, we expect significant physics results will be obtained. One topic we want to note here is that an asymmetry measurement of back-to-back two particle correlation, originating from back-to-back jets, as proposed by Boer and Vogelsang ${ }^{10}$ to determine Sivers function, is possible with the amount of data taken in this year. We also introduced a new electro-magnetic calorimeter (Muon Piston Calorimeter) in the forward region $(3.1<|\eta|<3.65)$, and measurements of A_{N} for forward π^{0} and direct photon become possible from 2006.

References

1. J. Collins, Nucl. Phys. B396, 161 (1993).
2. D. W. Sivers, Phys. Rev. D41 83 (1990).
3. J.-W. Qiu and G. Sterman, Phys. Rev. D59 014004 (1999).
4. Y. Koike et al., in these proceedings.
5. K. Adcox et al., Nucl. Instrum. Meth. A499, 469 (2003).
6. S. S. Adler et al., Phys. Rev. Lett. 95, 202001 (2005).
7. J. H. Lee et al. (BRAHMS Collaboration), in these proceedings.
8. C. A. Gagliardi et al. (STAR Collaboration), in these proceedings.
9. J. Adams et al., Phys. Rev. Lett. 92, 171801 (2004).
10. D. Boer and W. Vogelsang, Phys. Rev. D69, 094025 (2004).
