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Shower Monte Carlo event generators have played an important role in particle
physics. Modern experiments would hardly be possible without them. In this

talk I discuss how QCD physics is incorporated into the mathematical structure
of these programs and I outline recent developments including matching between

events with different numbers of hard jets and the inclusion of next-to-leading order

effects.

1. A critique of pure perturbation theory

Before beginning a discussion of shower Monte Carlo event generators, let
us examine programs that do purely perturbative calculations at next-to-
leading order (NLO). Consider the cross section to produce three jets in
electron-positron annihilation (using a suitable definition of what one means
by a jet). The ratio of this cross section to the total cross section is the three-
jet fraction, f3. Now, f3 is an infrared safe observable that is amenable to
calculation at NLO accuracy. In such a calculation, the program produces
simulated partonic events with three partons and others with four partons.
In either case, if the parton momenta meet certain criteria, the event can
be classified as a three jet event. Let us look at this calculation1 and ask
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for each jet in each three jet event what the mass of the jet is. Then we
can plot the calculated probability of finding a jet in a given bin of jet mass
M , f−1

3 df3/dM . The result is that f−1
3 df3/dM increases without bound as

M → 0. Exactly at M = 0 there is a term Aδ(M) where A is negative and
infinite. Clearly, this is not a good representation of nature.

This nonsensical result can be contrasted to the result from the standard
parton shower Monte Carlo program Pythia2, which produces a sensible
result in which the distribution f−1

3 df3/dM peaks at about 8 GeV for
√

s =
MZ .

Clearly it would be best to keep the NLO accuracy for f3 while at the
same time fixing the internal structure of the jets to be more like what one
gets in Pythia. This can be done if one keeps track of what the parton
shower algorithm does, expands the parton shower effects perturbatively,
and subtracts the NLO contribution of the parton shower from the NLO
term in the perturbative calculation. Then one can obtain a result that
combines the NLO calculation with Pythia.3 The result for f−1

3 df3/dM

closely follows the pure Pythia result. The result of this program for just
f3 closely follows the pure NLO result.

The program just mentioned is for electron-positron annihilation to
make three jets. For hadron-hadron collisions, programs for several im-
portant processes are available in the package MC@NLO.4 I will not say more
about the technical methods involved in combining “MC” with “NLO,” but
I will comment briefly on one further development later in this talk. In the
rest of this talk, I will mainly concentrate on leading order aspects of Monte
Carlo event generators.

2. Showers from the inside out

Consider the parton shower picture of hadron-hadron scattering in which
there is some sort of hard event, say jet production or squark-pair produc-
tion. The first thing to understand is that the parton shower description
starts from the hard scattering and proceeds toward softer scatterings. For
final state partons, one is thus working forwards in time, but for the ini-
tial state partons one is working backwards in time. Although the devel-
opment of the parton shower description of hadron scattering dates from
about 1980,5 it was not until somewhat later that this backwards evolution
scheme was developed.6 (I should mention that the program Herwig7 is
organized differently, with splittings at the widest angles done first.)
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3. Color coherence

Now let us think about soft gluon radiation. I consider three jet production
in electron-positron annihilation as an example. At the Born level, one has a
q q̄ g final state. The gluon is a color 8, but to leading order in an expansion
in powers of 1/N2

c , where Nc = 3 is the number of colors, the gluon can be
considered to be a 3 3̄ state. Then the outgoing quark and the 3̄ part of
the gluon constitute a 3 3̄ dipole, while the outgoing antiquark and the 3
part of the gluon constitute another 3 3̄ dipole.

The two dipoles will radiate soft gluons. Given the (approximate) color
structure, the two dipoles radiate independently: there is no quantum in-
terference between a gluon radiation from one dipole and radiation from
the other dipole. The radiation pattern is depicted in Figure 1. For each
dipole, there is soft-collinear radiation that is concentrated in the directions
of the two outgoing partons for that dipole. There is also a wider angle
component that is, approximately, spread over the angular region between
the parton directions. Thus the wide angle dipole has soft radiation spread
over a wide angular region while the narrow angle dipole has soft radiation
spread over a narrow angular region.

Figure 1. Radiation from the two dipoles in a q q̄ g final state. For each dipole, the

radiation is concentrated along the direction of the two outgoing partons and also con-

tains a wider angle component that is spread over an angular range that is roughly that
subtended by the two parton momenta.

In a parton shower Monte Carlo program, one can work to leading order
in 1/N2

c (as parton shower programs generally do) and make sure that
the parton splitting formulas properly take into account the interference



July 3, 2006 13:4 Proceedings Trim Size: 9in x 6in DIS06proc

4

between gluons emitted from the two parts of a color dipole. The program
Ariadne is based on this kind of picture.8 The latest version of Pythia

is also based on a dipole picture.2,9 The present authors have found that
the Catani-Seymour dipole formalism10 for generating the subtractions for
perturbative NLO calculations is also quite useful as the basis for splittings
in a parton shower.11,12

There is another way to do this. One can simply generate independent
emissions from each parton and then impose a restriction on the angles of
the emissions. This is the method of Herwig.7 In Herwig, a wide angle
soft gluon emission as depicted in the left-hand part of Figure 1 is gener-
ated first, before the splitting of the quark into a hard quark and a hard
gluon. The algorithm enforces that the angles between daughter partons
in a splitting decrease for splittings generated later in the algorithm evolu-
tion. The recognition of the importance of this ordering was important in
the development of parton shower algorithms.13

4. Shower evolution in pictures

Shower evolution can be represented using an evolution equation of the form
represented graphically as in Figure 2. The ovals represent the complete
shower evolution operator U(t3, t1) that, operating on a function represent-
ing the probability for the state to have a given partonic composition at
Monte Carlo time t1, produces a function representing the probability for
the state to have a given partonic composition at Monte Carlo time t3. The
narrow rounded rectangles represent the a no splitting operator that inserts
a Sudakov factor representing the probability that there was no splitting
from time t1 to time t3. In the second term, there is a no splitting oper-
ator N(t2, t1), followed by a splitting operator H(t2) at time t2, followed
by complete evolution U(t3, t2) for times after the splitting. There is an
integration over the intermediate time t2 at which the splitting occurs.

Figure 2. The evolution equation in pictures, as described in the text.
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To generate a cross section with a shower Monte Carlo event generator,
one can start with a hard squared matrix element for 2 → 2 scattering,
then apply the shower operator to the two incoming and two outgoing
partons. When the shower evolution equation is iterated, one obtains terms
representing n = 0, 1, 2, . . . splittings with Sudakov factors for the intervals
with no splittings, as depicted in Figure 3.

Figure 3. Calculation of a shower starting with a 2→ 2 hard cross section (dark rounded

rectangle).

5. An improved shower

The standard shower depicted in Figure 3 has a deficiency. In a standard
shower one has Sudakov factors and 1→ 2 parton splitting functions. These
splittings are approximations based on the splitting angles being small or
one of the daughter partons having small momentum. Thus the shower
splitting probability with two splittings approximates the exact squared
matrix element for 2 → 4 scattering. The approximation is good in parts
of the final state phase space, but not in all of it. Thus one might want
to replace the approximate squared matrix element with the exact squared
matrix element. However, if we use the exact squared matrix element, we
lack the Sudakov factors.

One can improve the approximation as illustrated in Figure 4. We
reweight the exact squared matrix element by the ratio of the shower ap-
proximation with Sudakov factors to the shower approximation without



July 3, 2006 13:4 Proceedings Trim Size: 9in x 6in DIS06proc

6

Sudakov factors. The idea is to insert the Sudakov factors into the exact
squared matrix element. This is the essential idea in the paper of Catani,
Krauss, Kuhn, and Webber.14 They use the kT jet algorithm to define the
ratio needed to calculate the Sudakov reweighting factor.

Figure 4. An improved version of the 2→ 4 cross section. We take the shower approx-
imation, divide by the approximate collinear squared matrix element, and multiply by

the exact tree level squared matrix element. The graphical symbol on the right hand

side represents this Sudakov reweighted cross section.

There is a further step in implementing this idea. CKKW divide the
shower evolution into two stages, 0 < t < tini and tini < t < tf , where tini

is a parameter that represents a moderate PT scale and tf represents the
very small PT scale at which showers stop and hadronization is simulated.

With this division, the Sudakov reweighting can be performed for the
part of the shower at scale harder than tini, as depicted in Figure 5. The first
term has no splittings at scale harder than tini. In the second term there
is one splitting, generated via the exact matrix element with a Sudakov
correction as discussed above. In the next term there are two splittings.
If we suppose that we do not have exact matrix elements for more than
2 → 4 partons, states at scale tini with more partons are generated with
the ordinary parton shower. However, this contribution is suppressed by
factors of αs. Evolution from tini to tf is done via the ordinary shower
algorithm.

Let σm[F ] be the contribution to the cross section for an infrared safe
observable F that comes from final states with m jets at scale tini. The
CKKW calculation just described gets σm[F ] correct to leading perturba-
tive order. The method can be extended. The present authors have shown
(at least for the case of electron-positron annihilation) how to get σm[F ]
for an infrared safe observable correct to next-to-leading order, αm+1

s .11

The required NLO adjustments are a little complicated, so I do not discuss
them here.
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Figure 5. Shower with CKKW jet number matching. The calculation for n jets at scale

tini is based on the Sudakov reweighted tree level cross section for the production of n

partons. Evolution from tini to tf is done via the ordinary shower algorithm.

6. An alternative shower improvement

There is an alternative way to organize the shower improvement so as to
include exact tree level matrix elements.12 One does not really need to split
the evolution at a scale tini. Suppose that one has the exact tree level
matrix elements for 2 → n partons for n ≤ N . Then the partonic cross
section at a final very soft scale tf before hadronization is the sum of the
2 → 2, 2 → 3, . . . 2 → N cross sections with Sudakov factors plus one
more term, which is the most important term. In the last term, we have
the Sudakov improved 2→ N squared matrix element in which the softest
splitting has scale t and we integrate over t. This is convoluted with the
simple shower approximation for splittings softer than t, down all the way
to tf . This is depicted in Figure 6. The terms before the last one are
included in the calculation but are not important because they contain the
Sudakov suppression for only a small number of splittings to occur down
to a very soft scale tf . In the term that really matters, we use the Sudakov
improved 2 → N squared matrix element with an arbitrary number of
further splittings generated in the collinear/soft approximation, all of this
with Sudakov suppression factors.
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Figure 6. Alternative shower improvement that does not involve a scale tini.
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