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—
The LHC Project

*The LHC is designed to collide

protons together at a centre of mass
energy of 14TeV, and a luminosity of |
103 cm™s! (after 3 years of running).

*ATLAS (A Toroidal Lhc ApparatUS)
1s a general purpose detector designed to

explore the new energy reach available The ATLAS detector
to the LHC. e s
Prooton 777 Proton

» Knowledge of proton content (i.e. PDFs) is important to understand cross-

sections at the LHC, and can limit sensitivity to new physics (e.g. compositeness)
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—
Measurement Of PDFs At A Hadron Collider

*Most PDF data comes from Deep Inelastic Scattering experiments (e.g.
HERA) but hadron colliders can provide additional information particularly
for the gluon distribution.

eHadron collider cross-sections are sensitive to PDFs through the initial state
of partons which interact in a given event for a 2—2 scattering 1.e:

PDFs Parton momenta

O\ /

o(P.P)= j > [dxd £ 12 )f, 5, 122 )6, (6. P, P, (47). 0% 1427

| 7 \

Sum over parton Parton Level Cross-Section
Hadron

types
momenta

Hard 2 —?2 scattering

*By comparing the experimental cross-section with NLO predictions,
knowledge of the PDFs can be extracted. NLO Cross-Sections however
can take 1-2 CPU days to calculate.
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Separating PDFs From The Integral

*A NLO Cross-Section for DIS 1s normally calculated using MC by:
,(0,)
W = Z { j q(x,.0,)

For events m=1....N, (w, is an MC weight,
q(x,0°) a PDF).
Can instead define a weight grid in (x,Q?), which is updated for each event m:
() () Where i, j define a discrete
pP) _ p " )
VVZ-, = VVZ 5 + w, point in X,Q? space relating
to the event.
*A PDF grid is also defined in x,Q* as q; .

*Cross-Section can be reproduced by combining the PDF and weight grids
after the Monte-Carlo run:

W= ZZW“’) a(Q) 9i.
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—
Separating PDFs From The Integral

*This method can recreate the Monte-Carlo cross-section exactly assuming
grids could be made with an infinitely small spacing in (x,Q?).

eInstead grids with a finite spacing in x,Q? are used and interpolation

methods used between points.
D.Graudenz, M.Hampel, A. Vogt, C

Berger, D.A. Kosower, C. Adloff,
S.Chekanov, M Wobisch.....

Q2

*The situation is a little more

complicated in the case of hadron-

hadron collisions as PDFs have to NI.‘O
be considered for both incoming weight >
particles, hence the grid is three
dimensional (X,,X,,Q?).

X9

X1
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Using Integsration Grids

Step 1: Fill the Grid  Event with

weight w,,

X1, X,, Q? . I : .
NLO event Do N Fill Grid with weight w,, at point
generator SL.OW (X1,X,,Q?)

Step 2: Multiply grid by PDFs to generate Cross-Section

Grid of weights in Multiply and add
(X1,X,,Q?) over (X,X,,Q?)
> Jet Cross-Section
PDFs defined at AST Fortran
(Xszan) interface
QCD Fit
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—
Grid Structure

*The grid implementation used was developed by Carli, Salem, Siegert and is
described in (hep-ph/0510324) [1].

Main Features Of A Grid

A co-ordinate transform is applied to the the x and Q? bins, to increase the
density of bins at low x and high Q2.

2
y(x)=In— Q") =Inn <.
X A A=A

*The grid is equidistant in the new variables.

*A high order interpolation method is used when filling the grid to provide
increased accuracy without increasing CPU memory consumption.

*The grid software is written in C++ and uses ROOT [2] libraries.

*The NLOJET++ event generator [3] (Z.Nagy) 1s used to generate MC weights

and a FORTRAN interface to the grid software is used for the fitting algorithm.
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—
A Grid Generated Cross-Section

*Tests were carried out to test the Grid’s ability to recreate the inclusive jet
cross-section.

*Here the ratio of the grid generated and standard NLOJET cross-section
1s shown for the inclusive jet cross-section 0<n<0.5:
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NIL.O-Monte Carlo Errors

Cross-section.

=
= C
> 0016} 0<n<0.5,
o C pT<STeV
= 0.014 L
= : Fluctuations in error
;L; 0.0121 probably caused by
fé 0.01F integrable singularities
o= - in NLOJET
S 0.008[
n C .
S o.006f- I I .
So 0.004 [
< L
— L
Q  0.002
< -
0

no.of events

*Tests were carried out comparing the grid generated cross-section and an
independently generated standard NLO cross-section for the inclusive jet

x10°

100 200 300 400 500 600 700 800 900 1000

*The statistical errors introduced by the Monte-Carlo calculation can be much

greater than that caused by using the grid even after generating a large no. 01; events
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PDF Fitting Using Grids - Basic Idea

*Grid methods allow hadron collider data to be used directly in QCD fits.

Assume a Ge?nerate pseudodata
parameterisation of a > using e.g Jetrad for
pdf with free inclusive jet .
parameters al,a2.... l
Tterate Calculate a cross-
| section using grid
e method with a set of

A

parameters al,a2.. PDF parameters al,a2..

Compare with pseudo-

data.

Obtain a new best fit pdf
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—
PDF Fitting Using Pseudodata

*Grids were generated for the inclusive jet cross-section at ATLAS in the
pseudorapidity ranges O<n<l, 1<n<2, and 2<n<3 up to pT=3TeV (NLOJET).

In addition pseudodata for the same process was generated using JETRAD [4].

*The pseudo-data was then used in a global fit to assess the impact of ATLAS
data on constraining PDFs:
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Gluon Fractional Error

Effect Of Increased Statistics on PDF Fits

Increase 10xstatistics
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eIncreasing the statistics from 1fb-! to 10fb-! has little effect on improving

the constraining of PDFs at ATLAS.
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Effect Of Decreased Systematic Errors On PDF Fits

Gluon Fractional Error
s

Decrease (uncorrelated) Systematic errors
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*Decreasing the systematic errors (on the ATLAS experiment) creates a
significant improvement in constraining the PDFS.
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Summary

e[ntegration grids using high order interpolation methods can be used to
recreate NLO cross-sections to accuracies of better than 0.01%.

ePreliminary results using pseudodata indicate that ATLAS jet data will be useful
to constrain the gluon PDF.

*Error on gluon PDF that can be extracted from the jet cross-section is dominated
by systematics, the statistical error being negligible even for 1fb-!

Ongoing Developments With Grids And Analysis

*Variable grid spacing (in x and Q?) is being developed to better model PDFs at
large Xx.

*Post grid generation changing of the renormalisation and factorisation scales
being developed.

eExtension of grid interface to other NLO QCD programs..

*Software freely available from the authors.
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