HOW RESUMMATION STABILIZES PERTURBATIVE EVOLUTION

AT SMALL x

Stefano Forte Università di Milano

TSUKUBA, APRIL 21, 2005

WHAT'S THE PROBLEM? NLO QCD LOOKS OK, FROM HERA TO LHC

FIXED-ORDER PERTURBATIVE QCD DESCRIBES

PERFECTLY THE HERA DATA DOWN TO VERY

THE NNLO CORRECTIONS

DIS HAS BEEN COMPUTED TO THREE LOOPS BY MOCH, VERMASEREN AND VOGT (2005) THEORY

- Perturbation theory unstable
- leading log approx no good

WHERE ARE THESE CONTRIBUTIONS?

PROGRESS

CONSISTENT THEORY \Rightarrow CONSISTENT PHENOMENOLOGY

- MOMENTUM CONSERVATION ⇔ DUALITY ABF '99 MATCHING OF ALTARELLI–PARISI & BFKL EVOLUTION ABF '99, CCSS '03
- RUNNING COUPLING ⇔ FACTORIZATION ABF '01
 DETERMINATION OF ANOMALOUS DIMENSION FROM BFKL SOLUTION ABF '02, CCS '99
- EXCHANGE SYMMETRY Salam '98 ⇔ PERTURBATIVE STABILITY RESUMMED PERTURBATIVE EXPANSION WELL-DEFINED ORDER BY ORDER ABF '05

G. ALTARELLI, R. BALL, S.F.

CIAFALONI, COLFERAI, SALAM, STAŚTO

CATANI, HAUTMANN (93), FADIN, LIPATOV (95-98) + CAMICI, CIAFALONI, DEL DUCA, SCHMIDT (98)

 \Rightarrow SUBLEADING RESUMMATION COEFFICIENTS

RELATED WORK BY THORNE, C. SCHMIDT, FORSHAW, ROSS, SABIO VERA, BARTELS, KANCHELI, K. ELLIS, HAUTMANN...

THE FIRST INGREDIENT: DUALITY (fixed coupling)

The Altarelli-Parisi eqn is an integro-differential equation \Rightarrow it can BE EQUIVALENTLY VIEWED AS Q^2 -EVOLUTION EQUATION FOR x-MOMENTS (usual RG eqn.), OR *x*-EVOLUTION EQUATION FOR Q^2 -MOMENTS(BFKL eqn.)

EVOLUTION IN $t = \ln Q^2$ $\frac{d}{dt}G(N,t) = \gamma(N,\alpha_s) \ G(N,t)$ MELLIN x-moments

EVOLUTION IN $\xi = \ln 1/x$ $\frac{d}{d\xi}G(\xi,M) = \chi(M,\alpha_s) \ G(\xi,M)$ MELLIN Q^2 -MOMENTS $G(N,t) = \int_0^\infty d\xi \, e^{-N\xi} \, G(\xi,t) \qquad G(\xi,M) = \int_{-\infty}^\infty dt \, e^{-Mt} \, G(\xi,t)$

THE TWO EQUATIONS HAVE THE SAME SOLUTIONS PROVIDED THE EVOLUTION KERNELS ARE RELATED BY

> $\chi(\gamma(N,\alpha_s),\alpha_s) = N$ $\gamma(\chi(M,\alpha_s),\alpha_s) = M$

& BOUNDARY CONDITIONS RELATED BY $H_0[M] \to G_0(N) = H_0[\gamma(N,\alpha_s)]/\chi'(\gamma(N,\alpha_s))$... Can switch from LLQ^2 to LL1/xchoosing the Evolution Kernel $\ln 1/x$ Evolution

... IN EITHER EQUATION! $\ln Q^2$ EVOLUTION

IN I / x EVOLUTION

DOUBLE-LEADING EVOLUTION

- THE DL KERNEL HAS A WELL-BEHAVED PERTURBATIVE EXPANSION
- DL is close to the LLQ ^2 result for $N\gtrsim 0.3\leftrightarrow M\lesssim 0.2,$ close to LL1/x for $M\sim 1/2$

DOUBLE-LEADING EVOLUTION MOMENTUM CONSERVATION!

THE SECOND INGREDIENT: RUNNING COUPLING

- THE RUNNING OF THE COUPLING $\alpha(t) = \alpha_{\mu} [1 \beta_0 \alpha_{\mu} t + ...]$ $(t \equiv \ln \frac{Q^2}{\mu^2})$ is leading Log Q^2 , but Next-to-Leading Log $\frac{1}{x}$
- Upon M-mellin transformation ($\ln x$ evolution) $\alpha_s(t)$ becomes an operator:

$$\hat{\alpha}_{s} \equiv \frac{\alpha_{\mu^{2}}}{1 - \beta_{0} \alpha_{\mu^{2}} \frac{d}{dM}} + O(\alpha_{\mu^{2}})$$

$$\Rightarrow \text{EVOLUTION EQUATION}$$
for $G(N, M)$ with b.c. $H_{0}(M)$

$$\hat{\alpha} = M O(M M) + H_{0}(M)$$

 $NG(N,M) = \chi(\hat{\alpha}_s, M)G(N,M) + H_0(M)$

• NOTE: OPERATOR ORDERING \Leftrightarrow ARGUMENT OF THE COUPLING $\int_{-\infty}^{\infty} \frac{dk^2}{k^2} \sum_{p=1}^{\infty} \left[\alpha_s^p(Q^2) K_L^{(p)}(Q^2/k^2) + \alpha_s^p(k^2) K_R^{(p)}(Q^2/k^2) \right] G(\xi, k^2) \Leftrightarrow$ $\Leftrightarrow \sum_{p=1}^{\infty} \left[\hat{\alpha}_s^p \chi_L^{(p)}(M) + \chi_R^{(p)}(M) \hat{\alpha}_s^p \right] G(\xi, M)$

RUNNING COUPLING DUALITY THE OPERATOR APPROACH: (Ball, S.F. 06)

DUAL KERNEL INVERSION

 $\chi(\hat{\alpha}_s, \gamma(\hat{\alpha}_s, N)) = N$ $\gamma(\hat{\alpha}_s, \chi(\hat{\alpha}_s, M)) = M$

ACTING ON G(N, M)

DUALITY STILL HOLDS TO ALL ORDERS!:

 \Rightarrow CAN DETERMINE γ (χ) AS A FUNCTIONAL OF FIXED-COUPLING DUAL γ_s (χ_s):

at LO, using $\chi_0 = N\hat{\alpha}^{-1}$, $\gamma \neq \gamma_s$ because $[N\hat{\alpha}^{-1}, \chi_0(M)] \neq 0$, so

$$\gamma \left(N\hat{\alpha}^{-1} \right) = \gamma_s \left(N\hat{\alpha}^{-1} \right) - \frac{1}{2} N\beta_0 \gamma_s^{\prime\prime} \left(N\hat{\alpha}^{-1} \right) / \gamma_s^{\prime} \left(N\hat{\alpha}^{-1} \right) + \dots$$

RESULTS UP TO NLO FOR χ , NNNLO FOR γ (including β_1 terms) (Ball, Falgari, S.F., Marzani 05)

EXACT ASYMPTOTIC SOLUTION

ASYMPTOTIC BEHAVIOUR CONTROLLED BY

MINIMUM OF $\chi(M) \Leftrightarrow$ RIGHTMOST SING. OF $\gamma(N)$

QUADRATIC KERNEL $\chi_q(\hat{\alpha}_s, M) = [c(\hat{\alpha}_s) + \frac{1}{2}\kappa(\hat{\alpha}_s)(M - M_s)^2]$

THE THIRD INGREDIENT: EXCHANGE SYMMETRY

DIAGRAMS FOR $\ln 1/x$ EVOLUTION KERNEL

$$\frac{d}{d\xi}G(\xi,M) = \chi(M,\alpha_s) \ G(\xi,M)$$
$$\chi(\xi,M) = \int_{-\infty}^{\infty} \frac{dQ^2}{Q^2} \left(\frac{Q^2}{k^2}\right)^{-M} \chi(\xi,\frac{Q^2}{k^2})$$

SYMMETRIC UPON INTERCHANGE OF INITIAL AND FINAL PARTON VIRTUALITIES

 $Q^2 \leftrightarrow k^2 \Leftrightarrow M \leftrightarrow 1 - M$ COLLINEAR RES. OF $\frac{1}{M}$ POLES \leftrightarrow ANTICOLLINEAR RES. OF $\frac{1}{1-M}$ POLES

SYMMETRY BREAKING

- **DIS KINEMATIC VARIABLES** $s = \frac{Q^2}{x}$ (small x)
- RUNNING OF THE COUPLING $lpha_s(Q^2)$

BOTH CAN BE DETERMINED EXACTLY

SYMMETRIZED EXPANSION

THE χ KERNEL

MOMENTUM CONSERVATION + SYMMETRY $\Rightarrow \chi$ ALWAYS HAS A MINIMUM

SYMMETRIC VARIABLES

SYMMETRIZED EXPANSION

THE χ KERNEL

MOMENTUM CONSERVATION + SYMMETRY $\Rightarrow \chi$ ALWAYS HAS A MINIMUM

ASYMMETRIC VARIABLES

EXPLOITING THE SYMMETRY

CAN DETERMINE THE APPROXIMATE NNLO BFKL KERNEL!

duality+symmetry+RC corrections (Ball, Falgari, S.F., Marzani, in preparation)

EXPLOITING THE SYMMETRY

CAN DETERMINE THE APPROXIMATE NNLO BFKL KERNEL!

duality+symmetry+RC corrections (Ball, Falgari, S.F., Marzani, in preparation)

... THE BFKL EXPANSION IS NOT SO GOOD

COMBINING THE INGREDIENTS... THE RESUMMED EXPANSION OF THE SPLITTING FUNCTION

MOMENTUM CONS.+SYMMETRY+ R.G. RESUMMATION

 \Rightarrow SOFT SIMPLE POLE IN ANOMALOUS DIMENSION (REGGE BEHAVIOUR)

COMBINING THE INGREDIENTS... THE RESUMMED EXPANSION OF THE SPLITTING FUNCTION

MOMENTUM CONS.+SYMMETRY+ R.G. RESUMMATION

 \Rightarrow SOFT SIMPLE POLE IN ANOMALOUS DIMENSION (REGGE BEHAVIOUR)

PHENOMENOLOGY: PERTURBATIVE STABILITY

SIMPLE POLE IN ANOMALOUS DIMENSION \Rightarrow Asymptotic small-x power $G \sim x^{-\alpha}$

- LEADING AND NEXT-TO-LEADING POWER QUITE FLAT, CLOSE TO EACH OTHER
- DEP. ON RENORMALIZATION GETS WEAKER \Rightarrow NLO STABILITY

PHENOMENOLOGY: GLUON EVOLUTION

EVOLVE STARTING GLUON DISTRIBUTION: $xg(x) = x^{-0.18}(1-x)^5$ at $Q^2 = (4 \text{ GeV})^2$ TO $Q^2 = (10 \text{ GeV})^2 (100 \text{ GeV})^2 (1000 \text{ GeV})^2$

- **RESUMMATION SOFTENS** THE SMALL-x BEHAVIOUR OF PDFS
- ASYMPTOTIC POWER RISE ONLY SETS IN VERY LATE

CONCLUSIONS

- MATCHING OF ALTARELLI-PARISI AND BFKL FULLY UNDERSTOOD AT RUNNING COUPLING LEVEL
- Generic small x behaviour: (soft) simple pole
- RESUMMED PERTURBATIVE EXPANSION STABLE
- RESUMMATION SOFTENS GLUON DOWN TO PRETTY LOW x

ABF VS. CCSS THE CCSS APPROACH:

- NUMERICAL BUT EXACT SOLUTION OF x-SPACE BFKL
- ABF & CCSS VERY CLOSE AT FIXED COUPLING LEVEL
- CCSS TREATS RUNNING BFKL EXACTLY, BUT GLAP AT FIXED COUPLING

ABF VS. CCSS THE CCSS APPROACH:

- NUMERICAL BUT EXACT SOLUTION OF x-SPACE BFKL
- ABF & CCSS VERY CLOSE AT FIXED COUPLING LEVEL
- CCSS TREATS RUNNING BFKL EXACTLY, BUT GLAP AT FIXED COUPLING

• SPLITTING FUNCTIONS CLOSER THAN TH. ERROR (!)

• DIFFERENCE IN GLUON DUE TO LARGE-x TERMS

NNLO CORRECTIONS & K-FACTORS

- NNLO CORRECTIONS ON EVOLUTION VERY SMALL
- K-factor almost scale independent

COEFFICIENT FUNCTION/SCHEME CHOICE MUST BE STUDIED!

EFFECTS OF OPERATOR ORDERING

$$\bar{\chi}_{\sigma LO}(\hat{\alpha}_s, M, N) = \chi_s \left(\hat{\alpha}_s \left(M + \frac{N}{2} \right)^{-1} \right) + \chi_s \left(\left(1 - M + \frac{N}{2} \right)^{-1} \hat{\alpha}_s \right) + \tilde{\chi}_0(\hat{\alpha}_s, M, N)$$

RESUMMATION 2000

- DOUBLE-LEADING PERTURBATIVE EXPANSION STABLE
- STRONG DEPENDENCE ON NONPERTURBATIVE ALL-ORDER INTERCEPT λ (value of $\chi(M)$ at min.)
- GOOD AGREEMENT WITH DATA IF λ FITTED (FINE-TUNED)

